
Guo et al. Intell Robot 2023;3(3):402-19
DOI: 10.20517/ir.2023.23 Intelligence & Robotics

Research Article Open Access

Reinforcement learning methods for network-based
transfer parameter selection
Yue Guo1, Yu Wang2, I-Hsuan Yang2, Katia Sycara1

1School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
2PlusAI, Inc., Santa Clara, CA 95054, USA.

Correspondence to: Yue Guo, School of Computer Science, Carnegie Mellon University, 1602B Newell-Simon Hall 5000 Forbes
Ave, Pittsburgh, PA 15213, USA. E-mail: yueguo@cs.cmu.edu

How to cite this article: Guo Y,Wang Y, Yang IH, Sycara K. Reinforcement learning methods for network-based transfer parameter
selection. Intell Robot 2023;3(3):402-19. http://dx.doi.org/10.20517/ir.2023.23

Received: 20 Jun 2023 First Decision: 18 Jul 2023 Revised: 14 Aug 2023 Accepted: 23 Aug 2023 Published: 31 Aug 2023

Academic Editor: Jianjun Ni, Simon X. Yang Copy Editor: Yanbin Bai Production Editor: Yanbin Bai

Abstract
A significant challenge in self-driving technology involves the domain-specific training of prediction models on inten-
tions of other surrounding vehicles. Separately processing domain-specific models requires substantial human re-
sources, time, and equipment for data collection and training. For instance, substantial difficulties arise when directly
applying a predictionmodel developed with data fromChina to the United States market due to complex factors such
as differing driving behaviors and traffic rules. The emergence of transfer learning seems to offer solutions, enabling
the reuse of models and data to enhance prediction efficiency across international markets. However, many transfer
learning methods require a comparison between source and target data domains to determine what can be trans-
ferred, a process that can often be legally restricted. A specialized area of transfer learning, known as network-based
transfer, could potentially provide a solution. This approach involves pre-training and fine-tuning ”student” models
using selected parameters from a ”teacher” model. However, as networks typically have a large number of parame-
ters, it raises questions about the most efficient methods for parameter selection to optimize transfer learning. An
automatic parameter selector through reinforcement learning has been developed in this paper, named ”Automatic
Transfer Selector via Reinforcement Learning”. This technique enhances the efficiency of parameter selection for
transfer prediction between international self-driving markets, in contrast to manual methods. With this innovative
approach, technicians are relieved from the labor-intensive task of testing each parameter combination, or endur-
ing lengthy training periods to evaluate the impact of prediction transfer. Experiments have been conducted using a
temporal convolutional neural network fully trained with the data from the Chinese market and one month’s US data,
focusing on improving the training efficiency of specific driving scenarios in the US. Results show that the proposed
approach significantly improves the prediction transfer process.

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, shar-

ing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

www.intellrobot.com

https://creativecommons.org/licenses/by/4.0/
www.intellrobot.com
http://crossmark.crossref.org/dialog/?doi=10.20517/ir.2023.23&domain=pdf

Page 403 Guo et al. Intell Robot 2023;3(3):402-19 I http://dx.doi.org/10.20517/ir.2023.23

Keywords: reinforcement learning, transfer learning, deep learning, self-driving, network-based transfer

1. INTRODUCTION
The prediction module in autonomous vehicles (AVs) plays a pivotal role, as it enables these AVs to anticipate
the intentions of surrounding vehicles. Data gathered from perception devices are processed by this module,
which typically uses a neural network (NN) to generate a label or trajectory that represents these intentions.
The accuracy of this prediction is undoubtedly critical to the ability of AVs to understand the environment
and serves as a prerequisite for making autonomous and correct decisions. One of the key challenges in the
predictionmodule is the heavy reliance of predictionmodels on domain-specific data sets. Self-driving compa-
nies operate across various markets, each characterized by unique data domains influenced by differing traffic
regulations, driving cultures, and geographical characteristics.

However, the opaque nature of NN models makes it difficult to identify which factors specifically influence
the models. Moreover, slight variations in data can significantly alter the parameters of these models. Train-
ing domain-specific models is economically burdensome but necessary for self-driving companies to ensure
accuracy across different markets. Additionally, in some markets, data collection may be constrained by legal,
financial, and resource-related factors, leading to data inefficiency and increasing the difficulty of developing a
model specifically for this domain. Thus, a crucial focus in improving the prediction module is to optimize the
utilization of existing prediction models. This means if a model can effectively generalize its predictions, suc-
cessful knowledge transfer could significantly reduce the development costs associated with predictionmodels.
However, this transfer process is complex, as models developed for specific markets are not easily transferrable
due to domain specifications.

The rapid advancement of transfer learning may provide solutions to the challenges of domain-specific mod-
els. Traditional transfer learning techniques, which reuse models trained on sufficient data from a specific
source domain, can reduce biases in domain features and statistics, even when the model is applied to another
target domain with only a smaller and potentially less representative dataset available. At first glance, these
advancements seem to solve the aforementioned problems. However, a significant roadblock arises in domain
adaptation tasks: these methods typically require access to both source and target data domains, and the quan-
tity of this data must be enough to ensure representability. This is because traditional transfer learning studies
domain adaptation and domain generation with the assumption that a classifier working well in the source
dataset may also function in the target dataset. This is achieved by examining the domain differences between
the two datasets or generalizing from the source dataset. Work in deep transfer learning specifically focuses on
classifiers that are deep NNs, but these, too, usually require that both source and target datasets be accessible.
Generating and accessing both datasets can be expensive, and legal regulations can complicate the transfer
of data across different markets. For instance, data protected in one country might not be usable in another,
or due to strict regulations, no data could be exported at all. Consequently, these factors demonstrate that
traditional transfer learning may not fully address the challenge of domain specificity.

A promising subfield of transfer learning, referred to as network-based transfer, provides a solution to the
problem of inaccessible datasets. The basis of this approach lies in the inherent structure of NNs, which extract
different levels of features. For instance, generic features can be transferred between domains by replicating
high-level parameters of certain networks. Moreover, given a small amount of data in the target domain, these
networks can be fine-tuned to exceed the performance achieved by training on the target dataset from scratch.
Network-based transfer eliminates the need for direct access to the source dataset or for comparing datasets,
as the essential knowledge is already encoded within the network after training and can be transferred to the
new domain.

http://dx.doi.org/10.20517/ir.2023.23

Guo et al. Intell Robot 2023;3(3):402-19 I http://dx.doi.org/10.20517/ir.2023.23 Page 404

However, network-based transfer does have two major limitations: (1) Pretraining with specific features from
the source domain can sometimes be misleading, resulting in performance that is even worse than training
from scratch. The success of transfer largely depends on the similarity between the source and target datasets,
and there is no practical way to ensure this similarity, nor do technicians knowhow they can identify potentially
harmful features; (2) The issue of parameter selection emerges when only a few parameters are meaningful
for transfer, especially in the context of deep networks. Manually searching for the optimal combination of
parameters to transfer can be extremely time-consuming. Thus, developing an automatic parameter selector
is crucial to optimize network-based transfer in order to improve efficiency and facilitate a positive transfer.

In this paper, an innovative approach is proposed to enhance network-based transfer, specifically for pre-
diction in AVs across international markets. The Automatic Transfer Selector via Reinforcement Learning
(ATSRL) is introduced, utilizing a reinforcement learning (RL) agent to automatically select the portions of
the network that should be transferred. This technique significantly enhances the efficiency of parameter selec-
tion for transfer prediction, providing a solution to the labor-intensive task of manually testing each parameter
combination or enduring lengthy training periods to evaluate the impact of prediction transfer. To be more
specific, a teacher NN trained on inaccessible source data is used as the starting point, and a set of student
networks that pre-load various parameter units from the teacher network is provided. The RL agent treats its
current student selection as its state, the next student selection as its action, and a statistical score of a small
batch of data on which the student network is trained as its reward. By treating the selection process as an RL
problem, the transfer procedure is accelerated since the most promising students are prioritized. The exper-
imental setup involves the application of ATSRL to a temporal convolutional NN (CNN), with the teacher’s
training performed on sufficient China data and transferred to the student’s training on one month’s US data,
with the focus on specific driving scenarios. The results demonstrate significant improvement in the prediction
transfer process.

In summary, this paper makes the following key contributions:

1. RL is leveraged to establish an efficient and safe transfer mechanism for domain-specific prediction models
in self-driving vehicles. Themethod is model-agnostic, implying it can be applied to any specific prediction
model.

2. The proposed method is not hindered by the need to collect data from various domains; instead, it requires
only the parameters of the prediction model trained with the source data. This approach enables model
training even with a limited amount of self-driving data in a newmarket, andmost importantly, the transfer
procedure is both fast and safe.

3. Experiments have been conducted using a temporal CNN, an advanced model widely used in the industry.
The effectiveness of the proposed method is empirically demonstrated.

The structure of the rest of this paper is as follows: Section 2 delves into related works, specifically discussing
transfer learning papers, with a particular emphasis on network-based ones and other automatic transfer works.
Section 3 provides the background on transfer learning with a network structure and introduces the basics of
RL. In Section 4, the proposed method ATSRL is discussed in detail. Section 5 presents the experimental
results, demonstrating the application to the industry-level model. Finally, Section 6 concludes the paper with
a discussion of the presented work and potential future research directions.

2. RELATED WORKS
Ahighly regarded survey paper suggests four categories of modern transfer learning: instance-based, mapping-
based, network-based, and adversarial-based [1]. Instance-based methods posit that partial instances from the
source domain can be leveraged in the target domain by weight adjustment. For example, some researchers
utilize AdaBoost-based technology to adjust weights of source domain instances, filtering out ones dissimilar

http://dx.doi.org/10.20517/ir.2023.23

Page 405 Guo et al. Intell Robot 2023;3(3):402-19 I http://dx.doi.org/10.20517/ir.2023.23

to the target domain for classification [2]. This line of work has seen improvements in extensions to regression
problems [3], faster algorithms [4], and more advanced metric frameworks [5]. However, it assumes access to
source instances, which may not be possible due to legal regulations within market-protected self-driving data.

Similar issues arise with mapping-based methods, which rely on establishing a mapping relationship from
source to target domains to a new data space with better similarity. Traditional works have applied transfer
component analysis [6,7], which has been extended to deep NNs to develop an adaptation module [8]. However,
difficulties arise when the prerequisite of statistically measuring both source and target datasets is hampered
by restricted access to the source dataset. The unclear legal status of sharing source data statistics can place
burden on technicians collaborating across markets, both in terms of cost and manpower.

Contrastingly, neither network-based nor adversarial-based approaches are concerned with the inaccessibility
to the source dataset. The aim of both is to identify transferable components within networks. Adversarial-
based approaches rely on an adversarial layer, inspired by generative adversarial nets (GAN) [9] to identify
transfer components, an advancement from basic network-based approaches. However, adversarial-based
approaches [10,11], which incorporate an adversarial layer into the prediction network, substantially modify the
structure of the prediction networks. Despite increasing interest, most of the experiments have been conducted
using basic CNNs [12].

This paper proposes a method that falls into the network-based transfer category. A key challenge in this
category is identifying which components are transferable. For network-based deep transfer learning, certain
pre-trained network parameters from the source domain may be reused in the target domain to improve the
performance. It is important to note that while some network modules are transferable, others may obstruct
transferability [13]. This seminal work has motivated numerous researchers to explore the idea of transferring
parts of the network, as opposed to traditional data-centric approaches. This strategy has been proven effec-
tive across various areas and is widely employed. For example, knowledge can be transferred from apparently
unrelated domains, such as real-world object detection, to gravitational wave signal detection [14]. This demon-
strates that NNs are excellent feature extractors for clustering algorithms, even though the data domainsmay be
irrelevant. Different layers extract different data representations, and researchers have used front layers to com-
pute intermediate image representation across various datasets [15], presenting the success of finding generic
features of the images. Certainly, not all network-based approaches eliminate the need for direct source data
access. In some works, adaptive classifiers and transferable features are jointly learned for both source and
target datasets [16], or domain adaptation commonly employed in traditional transfer learning is utilized [17].

Despite the diverse methods offered by network-based approaches given the advancements in modern NNs,
and their ability to greatly reduce the need for source data access, these approaches come with their own limi-
tations. Primarily, there is no systematic method to determine which network parts are beneficial for transfer.
Using the basic method outlined in [13], it is extremely time-consuming to find transferable network param-
eters. Moreover, preventing a non-transferable part from hindering the prediction is not straightforward. A
great amount of research work focuses on avoiding ”negative transfer”, which involves the transfer of inappli-
cable modules [18]. The proposed method in this paper builds an automatic selector to ensure the efficient and
positive transfer of the network.

A few works have considered automating the process of transfer. For example, there is an overlap between
a subfield of meta-learning and network-based transfer learning, wherein the parameters of the network in
the source domain may be used to improve the initialization of the one in the target domain. Works in meta-
learning aim to learn optimal parameters for networks, with a subset considering reusing parameters from a
source domain [19].

http://dx.doi.org/10.20517/ir.2023.23

Guo et al. Intell Robot 2023;3(3):402-19 I http://dx.doi.org/10.20517/ir.2023.23 Page 406

Few-shot learning is motivated by the idea of training using only a handful of samples from the target domain,
but this approach is model-specific [20].

Model-AgnosticMeta-Learning (MAML) shares the closest motivation to the approach proposed in this paper
within the framework of meta-learning, where researchers aim to identify parameters that are most sensitive
to task changes and can largely improve the loss [21].

However, MAML makes the assumption that loading all parameters directly as an initialization is beneficial
for the target task and that the most promising parameters should be primarily improved. This approach does
not fully address the potential for negative transfer that can occur when all parameters are copied and used as
initial points. Moreover, more complex and dissimilar datasets may present greater challenges for transfer, as
discussed in [22].

The experiments detailed in the renowned paper are simplistic, focusing either on object detection or Mojoco
robotics, and may be impractical for real-world scenarios such as self-driving prediction data across differ-
ent markets. In addition to MAML, a pairwise comparison inspired by meta-learning has been designed to
determine what and where to transfer [23].

This involves using a meta-network to learn mappings and weights accordingly for transferable layers. This ap-
proach, more robust thanMAML, no longer assumes that all parameters are beneficially initialized but instead
attempts to select the good ones. However, this method still requires learning the results of all combinations of
parameters, leading to an inefficient procedure. In contrast, the method proposed in this paper does not alter
the loss or experiment with all combinations of parameters to test transferability. Instead, it judges which parts
of the network would be beneficial for transfer by assigning a small score and then proceeds with the promis-
ing candidates. This approach is safer and more efficient for transfer for real-world datasets for self-driving
prediction.

Other distinct approaches to transfer learning exist. To name a few, unsupervised learning and fine-tuning of
transferable base knowledge are enabled through multi-scale convolutional sparse coding [24].

Furthermore, RL algorithms have been utilized in the design of neural networks [25], where a learning agent
explores architectures to enhance performance. The complexity of these networks might be better captured by
considering non-topological features, as presented in recent studies of complex network structures [26].

However, the method proposed in this paper, while echoing the idea of RL in architecture design, distinguishes
itself as the first to employ RL in selecting transferable parameters specifically for complex, real-world datasets,
such as self-driving data, in a safe and efficient manner.

3. BACKGROUND
In this section, we briefly introduce the background of Transfer Learning based on the Network Structure and
RL.

3.1. Transfer learning with network structure
The transferability of an NN is negatively affected by specific high-level features and difficulties associated
with splitting co-adaptive features [13]. In this work, Yosinski proposed a method to find out what features
were transferable from the networks trained by source dataset A to the target dataset B. The method required
two networks trained on each of the datasets, which were called baseA and baseB.

http://dx.doi.org/10.20517/ir.2023.23

Page 407 Guo et al. Intell Robot 2023;3(3):402-19 I http://dx.doi.org/10.20517/ir.2023.23

The control group, referred to as BnB, copied 𝑛 layers of parameters from baseB, and the rest of the parameters
were initialized as usual. For example, when 𝑛 = 3, the performance on dataset B was compared by freez-
ing or not freezing the parameters of layers 0, 1, and 2 to determine if the current parameters could achieve
performance equivalent to baseB.

In that case, co-adaptive features that explained potentially worse performance could be found so that the
designer would know those features should not be used separately.

The actual transfer work was done by copying parameters from baseA and examining how useful they were
compared to the previous. Through analysis and comparison, features could be inferred if they were trans-
ferable or not. For example, Yosinski introduced an experiment where performance of the network dropped
when freezing 4 and 5 layers of parameters because they were co-adaptive and fragile. Thus, it was anticipated
that the performance of transferring parameters of A with 4 and 5 layers dropped. However, the performance
drop with 6 and 7 layers transferred was not anticipated because no co-adaptive features affected the perfor-
mance; thus, the layers were purely not transferrable due to high-level specific features. Most importantly,
pre-training with the weights always led to better performance.

However, while all parameters in the work of Yosinski were trainable, the author did not consider the cost of
training time.

3.2. Reinforcement learning
A Markov Decision Process (MDP) is a discrete-time mathematical framework used for decision-making,
wherein an agent takes an action and receives feedback from the environment at each step.

Markov Decision Process An MDP is a tuple (S,A,R,T , 𝛾), where S is a set of states, A is a set of actions,
R : S ↦→ R is a reward function, T (𝑠, 𝑎, 𝑠′) = 𝑝(𝑠′ |𝑠, 𝑎) is a transition function, and 𝛾 ∈ [0, 1] is a discount
factor.

A policy, 𝜋(𝑠, 𝑎) = 𝑝(𝑎 |𝑠), specifies the probability of performing action 𝑎 at state 𝑠. Under a given policy 𝜋,
the value of a state 𝑉𝜋 (𝑠) is defined by the expected total discounted reward obtained starting from state 𝑠:

𝑉𝜋 (𝑠) = E
[∞∑
𝑡=0

𝛾𝑡R(𝑠𝑡) |𝑠0 = 𝑠, 𝜋

]
(1)

Notice that the next state is sampled from a probability distribution, determined by the current state and action
according to the transition function T (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) = 𝑝(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡). Intuitively, this equation recursively sums
the rewards obtained from the start to the final state.

The Q-function 𝑄𝜋 (𝑠, 𝑎) is similarly defined by the expected total discounted reward obtained starting from
state 𝑠 and performing action 𝑎:

𝑄𝜋 (𝑠, 𝑎) =
∑
𝑠′∈S
T (𝑠, 𝑎, 𝑠′) [R(𝑠′) + 𝛾 max

𝑎′∈A
𝑄𝜋 (𝑠′, 𝑎′)] (2)

The Q value thus serves as an estimation of the accumulative reward that can be obtained for a state-action
pair. Traditional RL aims to find the optimal policy 𝜋∗, which maximizes the expected discounted cumulative
reward received for any state. Here, a brief introduction to the algorithms of TD(0) for estimating 𝑉 , Sarsa
(on-policy TD control) for estimating 𝑄, and Deep Q network (DQN) is presented.

http://dx.doi.org/10.20517/ir.2023.23

Guo et al. Intell Robot 2023;3(3):402-19 I http://dx.doi.org/10.20517/ir.2023.23 Page 408

TD(0) employs a technique known as bootstrapping, in which it uses an existing estimate for updates. At
each step, TD(0) takes an action and observes the reward and subsequent state, which updates the value of the
current state, i.e., 𝑉 (𝑆) ←− 𝑉 (𝑆) + 𝛼[R + 𝛾𝑉 (𝑆′) −𝑉 (𝑆)]. TD(0) also utilizes an exploration parameter, where
it controls the probability of taking the action given by the policy trained so far or performs a random action
as part of the exploration process typical in RL.

Sarsa, instead, considers transitions from state-action pair to state-action pair and learns their Q values. Unlike
TD(0), which updates the V values, it updates Q values by 𝑄(𝑆, 𝐴) ←− 𝑄(𝑆, 𝐴) + 𝛼[R + 𝛾𝑄(𝑆′, 𝐴′) −𝑄(𝑆, 𝐴)].

Similar to TD(0), it utilizes an exploration parameter to select actions based onQ values or to perform random
exploration.

DQN uses a convolution NN to approximate Q values. It is known that RL is unstable when an NN (nonlinear
function approximator) is used to represent the Q function, but DQN addresses this issue by using a replay
buffer that randomizes the data and an iterative update to reduce correlations with the target.

These are the traditional and well-known RL algorithms, and the readers may refer to the original document
for more details [27,28].

This paper also does not aim to discuss the diverse advanced RL algorithms, as this work aims to demonstrate
the compatibility of the method with any RL algorithms.

4. METHODS
A high-level overview of our proposed method, ATSRL, is shown in Figure 1.

The first block provides a visualization of the initialization process, the recurring second and third blocks
represent the core procedure for selecting which models to train, and the final block concludes the procedure
by inputting the test data into the various trained model candidates.

Initialization We assume there is a Teacher NN N𝑇 trained from a dataset that is no longer accessible in the
current environment due to legal constraints or technical limitations. However, the features and the network
structures are known. Thus, we initialize 𝑛 student NNs identical to the teacher’s model, where 𝑛 is the number
of parameter units that we apply freezing or pretrain-finetuning to. These parameter units can be a single
neuron, a layer, or multiple layers of parameters appropriate for the specific structure of the network. For each
studentN𝑆𝑖 , we copy the parameter units from 0 to 𝑖 from the teacherN𝑇 .

Select a StudentWe use the following MDP definitions to represent the RL selector agent:

1. S: The current studentN𝑆𝑖 being trained
2. A: {𝑖 + 1 or 𝑖 − 1}
3. R: 𝑓1 score ofN𝑆𝑖 given a batch of Train Data 𝐷𝑡

4. T : Prob(𝑠′ |𝑠 = N𝑆𝑖 , 𝑎 = 𝑖 ± 1)
5. 𝛾: 1.0

Our RL selector agent treats the selection process as an RL mission. Each state 𝑠 ∈ S represents the current
student being selected for training. A value (V orQ, depending on the implemented RL algorithm) provides the
estimated cumulative reward the state can achieve. Given the updated value table, the selector agent chooses
an action 𝑎 ∈ 𝐴 that decides what should be the next state, i.e., the next student to be trained. The next student
is either the proceeding or the succeeding student with respect to the current student, depending on ±1. The

http://dx.doi.org/10.20517/ir.2023.23

Page 409 Guo et al. Intell Robot 2023;3(3):402-19 I http://dx.doi.org/10.20517/ir.2023.23

Figure 1. A visualization of the procedure.

reward is the 𝑓1 score the student receives from training a batch of data from the training dataset 𝐷(the 𝑡th
batch).

The transition function is set to be deterministic, and the decay rate is 1.0, i.e., a decay over longer episodes is
not considered because it does not affect the outcome.

Update a Student After the selector agent enters the current state, i.e., selects which student N𝑆𝑖 , the student
NN is updated. For example, in the third block of Figure 1, student 2 is selected. It is given a small batch of
training and validation data from the entire training dataset. The network of student 2 could either freeze the
first two parameter units or apply pretrain-finetuning to them.

Regardless, the remaining parameter units are updated, and thus, with the 𝑓1 score (or other meaningful statis-
tics), the selector agent also updates the corresponding value of student 2.

http://dx.doi.org/10.20517/ir.2023.23

Guo et al. Intell Robot 2023;3(3):402-19 I http://dx.doi.org/10.20517/ir.2023.23 Page 410

Then, the selector agent repeats the process to find the next student to train.

Test all Students After the RL selector agent has completed the training for each of the student networks, all
the students are tested with the testing data.

The best model among all the candidates is then selected as the final output student model.

Complexity Analysis The time complexity of the ATSRL method can be mainly attributed to the number of
student networks and the training process for each of these networks. In the worst-case scenario, if we consider
each student network to be trained independently, the time complexity is proportional to𝑂 (𝑛×𝑇), where 𝑛 is
the number of student networks, and𝑇 is the time required to train each network. However, the actual runtime
could be considerably less, as the process of training student networks may be optimized by transfer learning
from the teacher network and from each other, and only themost promising student is trained fully with partial
training data. The space complexity, on the other hand, depends on the number of student networks and the
size of each network and can be approximated as 𝑂 (𝑛 × 𝑀), where 𝑀 is the memory requirement for each
network.

𝑓1 Score Briefing The 𝑓1 score is a crucial statistic in binary classifications, representing a balance between
precision (the ratio of true positives to all predicted positives) and recall (the ratio of true positives to all actual
positives). Calculated as the harmonic mean of precision and recall, the 𝑓1 score ranges from 0 to 1, with 1
indicating perfect precision and recall and 0 showing a total absence of either. Though other statistics can
be considered as needed, depending on the characteristics of the data, the 𝑓1 score is most widely utilized in
real-world datasets.

Algorithm 1 Automatic transfer selector via reinforcement learning (ATSRL)

Input: Train Data 𝐷 = {𝐷1, 𝐷2...𝐷𝑚} where 𝑚 is the number of fold 𝐷 is split, Teacher NNN𝑇

Initialize 𝑉 (𝑠𝑖) or 𝑄(𝑠𝑖 , 𝑎), 𝑠𝑡0, 𝑓1_𝑏𝑒𝑠𝑡, Student NNN𝑆𝑖 , 𝑖 ∈ {1, 2...𝑛}
⊲ with 1, 2...𝑖 parameter units copied fromN𝑇 toN𝑆𝑖

(optional) lock 1, 2...𝑖 parameter units ofN𝑆𝑖

while 𝐷𝑡 ≠ 𝜙 do
𝐷𝑡 ← 𝐷 𝑗 ∈ 𝐷
𝑓1 ← Train(N𝑆𝑡 , 𝐷𝑡)
Update (𝑄(𝑠𝑡), 𝑓1)
if 𝑓1 > 𝑓1_𝑏𝑒𝑠𝑡 then

saveN𝑆𝑡

end if
𝑎𝑡 ← max𝑎𝑄(𝑠𝑡 , 𝑎)
𝑠𝑡+1 ← T (𝑠𝑡 , 𝑎𝑡)

end while

The pesudocode is presented more formally in Algorithm 1. The inputs of the algorithm include the training
data 𝐷 = {𝐷1, 𝐷2...𝐷𝑚} and the teacher networkN𝑇 .

The training data 𝐷 is divided into smaller batches, each used for fine-tuning in each step.

The current state 𝑠𝑖 represents the current student network N𝑆𝑖 being trained, requiring respective initializa-
tions of their values.

http://dx.doi.org/10.20517/ir.2023.23

Page 411 Guo et al. Intell Robot 2023;3(3):402-19 I http://dx.doi.org/10.20517/ir.2023.23

Figure 2. Compare freezing and pretraining residual blocks by hand.

𝑠𝑡0 denotes the initial student selected, and 𝑓1_𝑏𝑒𝑠𝑡 is a list of the best observed 𝑓1 scores or other relevant
statistics for each student.

Besides, parameter units are transferred fromN𝑇 toN𝑆𝑖 .

At each time step, a batch from the training data is selected.

Repeated traversals over the data are permissible, as student models may encounter the same batch of data
multiple times. The selected student is trained with this data batch, and the resulting 𝑓1 score is recorded. This
𝑓1 score enables the update of the current state’s value.

If the score outperforms previously observed scores for this state, this model N𝑆𝑡 is saved. Finally, the action
and the next state are selected based on the current value and transition.

5. EXPERIMENT RESULTS
Thedata utilized for the experiment is a month’s worth of truck driving data from the United States, specifically
related to the cutting-in scenario. This data is divided into training + validation and testing datasets at a ratio
of 0.8 : 0.2.

The input data consists of a sequence of 21 features of length 10, processed for the cutting-in scenario. The
output data is a binary integer, indicating whether or not cutting-in occurs.

The temporal convolutional neural network (TCN) [29] served as the prediction model. TCN creates a hierar-

http://dx.doi.org/10.20517/ir.2023.23

Guo et al. Intell Robot 2023;3(3):402-19 I http://dx.doi.org/10.20517/ir.2023.23 Page 412

Figure 3. Compare RL variations with 60 folds and 150 folds of data to train.

chical structure that integrates temporal features into a CNN.

Each internal node of the tree-like structure is a residual block, composed of multiple layers of dilated convo-
lution, activation, and normalization. Due to this structure, the initial consideration in the experiment was to
freeze or pretrain residual blocks instead of individual layers.

The TCN used in this case has a depth of 4, signifying the presence of 4 residual blocks plus extraneous pa-
rameters that could be selected as the transfer target. A model was trained using the training + validation data
and was denoted as ScratchUS. Additionally, a prediction model trained in China was obtained. Although the
features were identical, the data from China was inaccessible for the experiment.

This model was referred to as TeacherCN. The goal was to leverage both TeacherCN and the existing US

http://dx.doi.org/10.20517/ir.2023.23

Page 413 Guo et al. Intell Robot 2023;3(3):402-19 I http://dx.doi.org/10.20517/ir.2023.23

Figure 4. Compare best RL variations. RL: reinforcement learning.

Figure 5. Layer level transfer.

training + validation data to create a new transferred model that would surpass ScratchUS in performance on
the testing data.

The chosen metrics were the five most important statistics in self-driving prediction:

1. Lane Change False positive Rate (FPR): FPR of accurately predicting the lane change
2. Lane Change Precision: precision of lane change
3. Lane Change Recall: recall of lane change
4. 05 Frame Early Rate: prediction correctness using the 5 latest frames

http://dx.doi.org/10.20517/ir.2023.23

Guo et al. Intell Robot 2023;3(3):402-19 I http://dx.doi.org/10.20517/ir.2023.23 Page 414

Figure 6. Runtime of the experiments.

5. 10 Frame Early Rate: prediction correctness using the 10 latest frames

FPR is a critical statistic in the context of lane change predictions in autonomous driving. It measures the
percentage of instances in which a lane change is incorrectly predicted; that is, when the prediction system
inaccurately indicates that a lane change will occur when, in fact, it does not. Minimizing FPR is crucial
because an excessive number of false alarms can lead to unnecessary or inappropriate responses from the
vehicle, potentially compromising safety and operational efficiency.

All subsequent experiments were conducted on the same testing data, utilizing the above statistics. A total of
16382 data points were used for testing. For convenience in visualization, 1 - FPRwas displayed instead of FPR.
These statistics are empirically informative for the other teams in the general planning-control-prediction-fuel-
economy group at PlusAI and are thus more meaningful than other indicators such as validation loss.

5.1. Traditional network transfer by hand
The manual freezing and pretraining of residual blocks were first examined. The result is shown in Figure
2. The control group (red dots) utilized the model directly trained by the training set of data (ScratchUS) to
investigate potential co-adaptive features.

The results revealed that as residual block 0, residual block 01, residual block 012, residual block 0123, and all
parameters were gradually frozen, the red dots remained nearly unchanged.

This suggested limited co-adaptive features that might impact the result. Subsequently, TeacherCNwas used as
the teacher model, and the same manual freezing procedure was repeated (blue dots). Almost every freezing
procedure remains unchanged except when all parameters are frozen (with x index at 4). In this case, it was
inferred that all parameters of residual blocks are transferable except for the remaining parameters.

This further suggested that TeacherCN was not directly applicable to the data collected in the US, as the lane
change recall and 10 frame early rate were extremely poor.

Manual pretraining with TeacherCN (green dots) served as a sanity check. As expected, it performed slightly
better than the control group and manual freezing of residual blocks.

Notably, pretraining and finetuning with all parameters again proved to be an exception (with x index at 4),

http://dx.doi.org/10.20517/ir.2023.23

Page 415 Guo et al. Intell Robot 2023;3(3):402-19 I http://dx.doi.org/10.20517/ir.2023.23

which could also be inferred from the blue dots. For other transfer options, performance was slightly better
than the control group.

The rest of the experiment aimed to enhance this advantage using the proposed methods. Each point on the
plot represented an independent training procedure, with the training + validation data divided into 3 folds,
each taken by each training. Fifty episodes were assigned for each fold to ensure convergence. All training
procedures used the same 3 folds.

5.2. RL variations trained over time
Figure 3 illustrated how five important statistics changed over time, from iterating 60 folds of data to 150
folds. The entire training + validation data was divided into 30 folds, representing the performance for 2 and 5
iterations of traversing the entire data. As the number of folds increased, fewer data entries were contained in
each fold, and convergence time was accordingly shortened to 30 episodes for each fold. Moreover, in contrast
to providing the same 3 folds to all the training procedures, only the model represented by the current state
was given one of the 30 folds of data and trained to convergence at a time. Three RL algorithm variations
were experimented with: TD(0) (in orange), SARSA (in green), and DQN (in blue). Similar to Figure 2, but
reversed, the y-axis displayed the transferred residual blocks, and the x-axis presented the accuracy. Darker
colors represented 60 folds, while the lighter colors represented 150 folds. For the lane change FPR, regardless
of what residual blocks were transferred, DQN clearly performed better than the other two. Increasing the
number of folds did not necessarily improve the FPR.

For TD and SARSA, the difference was more pronounced. This was also similar for lane change precision,
where DQN outperformed the other two and showed smaller improvement over time. This inferred that DQN
trained the fastest and best, and no additional folds were necessary.

For the remaining three statistics of lane change recall, 05 frame early rate, and 10 frame early rate, DQN
behaved in a general manner. Small variances were observed among the specific residual blocks selected for
transfer according to those statistics. Interestingly, though SARSA selected actions based on the estimation of
Q values, it did not demonstrate more advantage than TD(0) where the selection process was largely random.

It could be concluded that DQN performed better than the other two variations, but SARSA did not seem to
be more advantageous as a general observation. However, the best model trained by SARSA outperformed
TD(0), as will be shown in the next sub-section.

5.3. Best models of RL variations
From Figure 2 and Figure 3, it might be difficult to define what constitutes the best model since there were five
statistics of interest.

A high early rate might also correlate with a high FPR rate, making it challenging to decide which one should
be sacrificed for the trade-off.

However, from Figure 3, it was also observed that pretraining and finetuning with residual blocks of 0123
resulted in the lowest FPR, highest precision, and 05 frame early rate, while at the same time, the other two
statistics were within the top 3. This observation was consistent with Figure 2, though the advantage was small.

It was inferred that the algorithm designed with RL agents was capable of pointing out the best candidate as
well.

In this case, transferring residual blocks of 0123 was treated as the best, and its RL variations and manual

http://dx.doi.org/10.20517/ir.2023.23

Guo et al. Intell Robot 2023;3(3):402-19 I http://dx.doi.org/10.20517/ir.2023.23 Page 416

pretrain were compared in Figure 4. Notably, DQN (in blue) was found to be optimal as it achieved the highest
number among four in all statistics except for lane change recall.

Yet, it was still better than manual pretraining selection.

TD(0) and SARSA showed alternate advantages over each other, generally doing a better job than pretraining
manually.

One possible explanation was that multiple small batches allowed for better finetuning. However, the primary
focus was not on surpassing the manual pretraining but on improving the auto-selection process.

In summary, the DQN transfer model with residual blocks of 0123 was retained as the best and further com-
pared with a layer-level selection model in the next sub-section.

5.4. Layer-level transfer
Up until now, pre-training and finetuning were performed with the parameters of entire residual blocks - one
reason was due to the structure of TCN, and the second was that traditional manual pretraining and finetuning
made it too laborious to approach optimal transfer by hand. The results in the previous subsections validated
the methodology, leading to an exploration of whether pre-training and finetuning with parameters of single
layers could yield even better results. Additionally, the number of folds was increased to 50, while the episode
of each fold was decreased to 20 to achieve convergence. Similarly, each time, only the model with specific
layers transferred was trained. In line with transferring by residual blocks, layer-level transfer referred to
transferring parameters of the 1st, 1st + 2nd, 1st + 2nd + 3rd, ... until all the parameters. Therefore, with some
layers transferred, they were exactly the same as transferring the residual blocks as previous. In the results
shown in Figure 5, the x axis referred to layers transferred, and the y axis showed the accuracy. The blue dots
and red dots denoted transferring the single layer or whole residual blocks, respectively, where they had the
same x axis, which meant the corresponding residual blocks were composed of the layers. Most red dots were
close to the blue dots, representing the same layers to transfer. To clarify, there was no interest in boosting
the corresponding blue dots to perform significantly better than the red ones. It was anticipated that the slight
difference was due to training variance. The goal of this experiment was to find out if there were candidate
layers that could be transferred and outperform the existing performance, i.e., could any blue dots be found
that were better among all candidates of blue and red dots.

The answer was affirmative, as readers could easily observe that red dots were never the optimal among the
five statistics. Therefore, with the proposed algorithm, it was claimed that the selection became more efficient
for this transfer model.

5.5. Runtime comparison
A comparison of the runtime of the experiments was also performed, as shown in Figure 6.

One significant challenge with manual pretraining and finetuning is its labor-intensive nature.

Selecting with RL agents can save time because the advantage of NNs is that finetuning a small amount of data
can significantly enhance performance.

With less data, training converges faster, and the use of various batches of data prevents overfitting.

It is worth noting that the result was empirical, with statistics provided in the previous sections. In this com-
parison, “dqn0” and “dqn1” referred to the DQN selector with 60 and 150 folds, respectively, and the same

http://dx.doi.org/10.20517/ir.2023.23

Page 417 Guo et al. Intell Robot 2023;3(3):402-19 I http://dx.doi.org/10.20517/ir.2023.23

applied to “sarsa” and “td”. The result showed that with the same amount of data used for training (5 iterations
traversing the entire training + validation data, with various batch sizes), the DQN selector with the single
layer transferred was the most efficient.

6. CONCLUSION
This paper introduced innovative methods of ATSRL applied to the self-driving prediction model domain.
There was a successful use of a network trained in China, despite no access to the China data, to assist the
learning of a prediction network for US data. This process proved more efficient and effective than manual
training, and it also surpassed pre-training and fine-tuning conducted solely using US data.

Future work could expand the current scenario to include not only cut-in but also cut-out and merge. The
claim was also made that the algorithm is not limited to the temporal convolutional network. While it is
the most recent module in the company infrastructure and hence served as the test bed, future plans include
extending to newer models as they become available and conducting further comparisons. Furthermore, plans
to perform experiments with a teacher model either from the US or China are in place to assist students with
a small amount of German data. This will likely prove to be a more challenging task given the differences in
traffic rules and culture between Germany and both China and the US.

The focus of this workwas largely practical and aimed at improving the existing architecture. Thus, an extensive
comparison with a broad range of network-based transfer learning methods was not performed. Additionally,
the most advanced RL algorithms were not considered in the study, as the aim was to validate the practicability
of the current approach. These represent the limitations and two key areas for further exploration in future
work.

7. PATENTS
Notice of Allowance (US) has been received in Spring 2023.

The study is accompanied by a patent application in the self-driving domain. As the patent has been approved,
it can limit the scope for introducing more experiments or utilizing the most advanced RL algorithms for
transfer in the current work. Thus, further comparisons with benchmarks and incorporating advanced RL
algorithms will be considered for future research endeavors. This approach will ensure the patent application
process is not disrupted while continuing to advance and refine the work.

DECLARATIONS
Acknowledgments
The authors would like to thank Dr. Joseph Campbell and Dr. Simon Stepputtis who are postdoc fellows in
Advanced Agent-Robotics Technology Research led by Prof. Katia Sycara for their insights and discussions.

Authors’ contributions
Made substantial contributions to conception and design of the study and performed data analysis and inter-
pretation: Guo Y
Performed data acquisition, as well as provided administrative, technical, and material support: Wang Y, Yang
IH, Sycara K

Availability of data and materials
The data is owned by PlusAI, Inc. where the first author performed her internship project on self-driving.

http://dx.doi.org/10.20517/ir.2023.23

Guo et al. Intell Robot 2023;3(3):402-19 I http://dx.doi.org/10.20517/ir.2023.23 Page 418

Financial support and sponsorship
This work was supported by PlusAI and by DARPA award HR001120C0036 and by AFRL/AFOSR award
FA9550-18-1-0251 and AFOSR FA9550-18-1-0097 and ARL W911NF-19-2-0146.

Conflicts of interest
All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
©The Author(s) 2023.

REFERENCES
1. Tan C, Sun F, Kong T, et al. A Survey on Deep Transfer Learning. In: Artificial Neural Networks and Machine Learning – ICANN 2018.

Springer International Publishing; 2018. pp. 270–79. DOI
2. Dai W, Yang Q, Xue GR, Yu Y. Boosting for transfer learning. In: Proceedings of the 24th International Conference on Machine Learning.

ACM; 2007. DOI
3. Gupta S, Bi J, Liu Y, Wildani A. Boosting for regression transfer via importance sampling. Int J Data Sci Anal 2023. DOI
4. Yao Y, Doretto G. Boosting for transfer learning with multiple sources. In: 2010 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition. IEEE; 2010. DOI
5. Xu Y, Pan SJ, Xiong H, et al. A Unified Framework for Metric Transfer Learning. IEEE Trans Knowl Data Eng 2017;29:1158–71. DOI
6. Zhang J, Li W, Ogunbona P. Joint geometrical and statistical alignment for visual domain adaptation. In: 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). IEEE; 2017. DOI
7. Pan SJ, Tsang IW, Kwok JT, Yang Q. Domain adaptation via transfer component analysis. IEEE Trans Neural Netw 2011;22:199–210.

DOI
8. Long M, Cao Y, Cao Z, Wang J, Jordan MI. Transferable Representation Learning with Deep Adaptation Networks. IEEE Trans Pattern

Anal Mach Intell 2019;41:3071-85. DOI
9. Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Commun ACM 2020;63:139-44. DOI
10. Tzeng E, Hoffman J, Saenko K, Darrell T. Adversarial discriminative domain adaptation. In: 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). IEEE; 2017. DOI
11. Ganin Y, Ustinova E, Ajakan H, et al. Domain-adversarial training of neural networks. In: Domain Adaptation in Computer Vision

Applications. Springer International Publishing; 2017. pp. 189–209. DOI
12. Tzeng E, Hoffman J, Darrell T, Saenko K. Simultaneous deep transfer across domains and tasks. In: 2015 IEEE International Conference

on Computer Vision (ICCV). IEEE; 2015. DOI
13. Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks? Advances in neural information

processing systems 2014;27. Available from: https://proceedings.neurips.cc/paper_files/paper/2014/hash/375c71349b295fbe2dcdca920
6f20a06-Abstract.html. [Last accessed on 27 Aug 2023]

14. George D, Shen H, Huerta EA. Classification and unsupervised clustering of LIGO data with Deep Transfer Learning. Phys Rev D
2018;97. DOI

15. Oquab M, Bottou L, Laptev I, Sivic J. Learning and transferring mid-level image representations using convolutional neural networks. In:
2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2014. DOI

16. Long M, Zhu H, Wang J, Jordan MI. Unsupervised domain adaptation with residual transfer networks. NeurIPS 2016;29. Available from:
http://ise.thss.tsinghua.edu.cn/~mlong/doc/residual-transfer-network-nips16.pdf. [Last accessed on 27 Aug 2023]

17. Zhu H, Long M, Wang J, Cao Y. Deep Hashing Network for Efficient Similarity Retrieval. In: Proceedings of the AAAI Conference on
Artificial Intelligence 2016 mar;30. DOI

18. Zhang W, Deng L, Zhang L, Wu D. A survey on negative transfer. IEEE/CAA J Automa Sin 2023;10:305–29. DOI
19. Huisman M, Van Rijn JN, Plaat A. A survey of deep meta-learning. Artif Intell Rev 2021;54:4483–541. DOI
20. Rezende DJ, Mohamed S, Danihelka I, Gregor K, Wierstra D. One-shot generalization in deep generative models. In: International

conference on machine learning. PMLR; 2016. pp. 1521–29. Available from: http://proceedings.mlr.press/v48/rezende16.pdf. [Last
accessed on 27 Aug 2023]

21. Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks. In: International conference on machine
learning. PMLR; 2017. pp. 1126–35. Available from: http://proceedings.mlr.press/v70/finn17a/finn17a.pdf. [Last accessed on 27 Aug

http://dx.doi.org/10.20517/ir.2023.23
http://dx.doi.org/10.1007/978-3-030-01424-7_27
http://dx.doi.org/10.1145/1273496.1273521
http://dx.doi.org/10.1007/s41060-023-00414-8
http://dx.doi.org/10.1109/cvpr.2010.5539857
http://dx.doi.org/10.1109/tkde.2017.2669193
http://dx.doi.org/10.1109/cvpr.2017.547
http://dx.doi.org/10.1109/tnn.2010.2091281
http://dx.doi.org/10.1109/tpami.2018.2868685
http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.1109/cvpr.2017.316
http://dx.doi.org/10.1007/978-3-319-58347-1_10
http://dx.doi.org/10.1109/iccv.2015.463
https://proceedings.neurips.cc/paper_files/paper/2014/hash/375c71349b295fbe2dcdca9206f20a06-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/375c71349b295fbe2dcdca9206f20a06-Abstract.html
http://dx.doi.org/10.1103/physrevd.97.101501
http://dx.doi.org/10.1109/cvpr.2014.222
http://ise.thss.tsinghua.edu.cn/~mlong/doc/residual-transfer-network-nips16.pdf
http://dx.doi.org/10.1609/aaai.v30i1.10235
http://dx.doi.org/10.1109/jas.2022.106004
http://dx.doi.org/10.1007/s10462-021-10004-4
http://proceedings.mlr.press/v48/rezende16.pdf
http://proceedings.mlr.press/v70/finn17a/finn17a.pdf

Page 419 Guo et al. Intell Robot 2023;3(3):402-19 I http://dx.doi.org/10.20517/ir.2023.23

2023]
22. Campbell J, Guo Y, Xie F, Stepputtis S, Sycara K. Introspective action advising for interpretable transfer learning. In: Conference on

Lifelong Learning Agents; 2023. Available from: https://arxiv.org/pdf/2306.12314.pdf. [Last accessed on 27 Aug 2023]
23. Jang Y, Lee H, Hwang SJ, Shin J. Learning what and where to transfer. In: International Conference on Machine Learning. PMLR; 2019.

pp. 3030–39. Available from: http://proceedings.mlr.press/v97/jang19b/jang19b.pdf. [Last accessed on 27 Aug 2023]
24. Chang H, Han J, Zhong C, Snijders AM, Mao JH. Unsupervised Transfer Learning via Multi-Scale Convolutional Sparse Coding for

Biomedical Applications. IEEE Trans Pattern Anal Mach Intell 2018;40:1182–94. DOI
25. Baker B, Gupta O, Naik N, Raskar R. Designing neural network architectures using reinforcement learning. In: International Conference

on Learning Representations; 2016. Available from: https://arxiv.org/pdf/1611.02167.pdf. [Last accessed on 27 Aug 2023]
26. Shang Y. Feature-enriched core percolation in multiplex networks. Phys Rev E 2022;106:054314. DOI
27. Sutton RS, Barto AG. Reinforcement Learning: An Introduction. IEEE Trans Neural Netw 1998;9:1054-54. DOI
28. Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature 2015;518:529-33. DOI
29. Bai S, Kolter JZ, Koltun V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv

preprint arXiv:180301271 2018. Available from: https://arxiv.org/pdf/1803.01271.pdf. [Last accessed on 27 Aug 2023]

http://dx.doi.org/10.20517/ir.2023.23
https://arxiv.org/pdf/2306.12314.pdf
http://proceedings.mlr.press/v97/jang19b/jang19b.pdf
http://dx.doi.org/10.1109/tpami.2017.2656884
https://arxiv.org/pdf/1611.02167.pdf
http://dx.doi.org/10.1103/physreve.106.054314
http://dx.doi.org/10.1109/tnn.1998.712192
http://dx.doi.org/10.1038/nature14236
https://arxiv.org/pdf/1803.01271.pdf

	1. Introduction
	2. Related Works
	3. Background
	3.1. Transfer learning with network structure
	3.2. Reinforcement learning

	4. Methods
	5. Experiment Results
	5.1. Traditional network transfer by hand
	5.2. RL variations trained over time
	5.3. Best models of RL variations
	5.4. Layer-level transfer
	5.5. Runtime comparison

	6. Conclusion
	7. Patents
	Declarations
	Acknowledgments
	Authors’ contributions
	Availability of data and materials
	Financial support and sponsorship
	Conflicts of interest
	Ethical approval and consent to participate
	Consent for publication
	Copyright

