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ABSTRACT
Visual data exploration tools, such as Vizdom or Tableau,
significantly simplify data exploration for domain experts
and, more importantly, novice users. These tools allow to
discover complex correlations and to test hypotheses and
differences between various populations in an entirely visual
manner with just a few clicks, unfortunately, often ignoring
even the most basic statistical rules. For example, there
are many statistical pitfalls that a user can “tap” into when
exploring data sets.

As a result of this experience, we started to build QUDE
[1] , the first system to Quantifying the Uncertainty in Data
Exploration, which is part of Brown’s Interactive Data Ex-
ploration Stack (called IDES). The goal of QUDE is to auto-
matically warn and, if possible, protect users from common
mistakes during the data exploration process. In this paper,
we focus on a different type of error, the Simpson’s Para-
dox, which is a special type of error in which a high-level
aggregate/visualization leads to the wrong conclusion since
a trend reverts when splitting the visualized data set into
multiple subgroups (i.e., when executing a drill-down)..

1. INTRODUCTION
Motivation: While visual data exploration tools are key

to democratizing data science, they also carry new risks.
For example, it is easy to mistake a visualization (e.g., a
histogram showing that more females are impacted by a cer-
tain disease) for a statistically significant fact, even though
it might just be a random occurrence [1]. Similar, visual
data exploration tools often increase the risk that the users
are unaware of the impact data errors or incompleteness of
the data [2]. We recently observed that when analyzing the
age distribution of patients data in the MIMIC-II data set
[10]. The distribution was visualized using histograms with
a bucket-size of 10 years. Nothing was suspicious about the
visualized distribution, which showed that very young and
older people are slightly more often in the emergency room.
Only after zooming in by we found that the data set did not
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Figure 1: UC Berkeley Gender Bias

contain any patients data with an age between 1-9 years but
a lot of patients with an age of 0. After further investigation,
we found out that the data came from an emergency room
for adults and 0 was used if the age was not known. Even
more severe, filtering out the 0-age patients changed signif-
icantly our models, which we built using the same visual
interface, for example to analyze which diseases are most
common between younger and older patients.

As a result of this experience, we started to build QUDE
[1] , the first system to Quantifying the Uncertainty in Data
Exploration, which is part of Brown’s Interactive Data Ex-
ploration Stack (called IDES). The goal of QUDE is to auto-
matically warn and, if possible, protect users from common
mistakes during the data exploration process. For example,
in our recent SIGMOD paper [14] we describe techniques to
automatically control the multi-hypothesis problem, which
can arise from interactive exploring data to find interesting
insights. In this paper, we focus on a different type of er-
ror, the Simpson’s Paradox, which is a special type of error
in which a high-level aggregate/visualization leads to the
wrong conclusion as described earlier.

Contributions: The Simpson’s Paradox [6], also Yule–
Simpson effect, is a paradox in which a trend reverts when
splitting a data set into multiple subgroups (i.e., when ex-
ecuting a drill-down). The most famous example for this
paradox is the gender bias among graduate school admis-
sions to University of California, Berkeley. As shown in
Figure 11, the overall admissions of 1973 showed that men
were more likely to be admitted than women. However,
when looking at the largest departments the trend actually
reverted.

1Source: https://en.wikipedia.org/wiki/Simpson’s paradox
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Figure 2: Simpson’s Paradox Warning

In this paper, we present algorithms that detect a Simp-
son’s Paradox online as the user explores a data set. The
main contribution of this paper is the discussion of these
algorithms and the evaluation on a real data set of flight
records. The data set contains the details of all flights and
their delays within the USA from 1987–2008, with nearly
120 million records, taking up 12 GB uncompressed.

The two main challenges to enable an efficient online de-
tection are the sheer data size as well as the number of differ-
ent attribute combinations that need to be tested. For our
algorithms, we therefore applied two main techniques: (1)
For dealing with large data sets, we have developed a set of
approximate algorithms that can stream over the data and
decide in a probabilistic manner if the data is likely contain
a Simpson Paradox. This allows our algorithms to make a
prediction at interactive speeds of how likely it is to find
a Paradox after having seen only a small amount of data.
(2) Since many different attribute combinations need to be
tested to detect a Simpson Paradox, we devised a technique
that leverages ideas from multi-armed bandits to find a good
trade-off between exploration and exploitation. These tech-
niques allow us to scale out to large data sets or data sets
with many different attributes.

Our experiments with the flight data set show that when
applying these to techniques we can efficiently warn the user
at interactive speeds during an exploration session.

Outline: In Section 2 we given an overview of differ-
ent statistical pitfalls and initial ideas of how to make users
aware of them. Afterwards, Section 3 then discusses the
problem statement this paper addresses and presents our
different variants of detection algorithms to warn users if
the data contains a Simpson Paradox. In Section 4, we then
evaluate these algorithms using the flight data set mentioned
before. Finally, we conclude in Section 6.

2. USER INTERFACE
Warning the user about a potential Simpson’s Paradox [6]

during a visual data exploration session has to be non-disruptive
and needs to work even in the presence of approximate re-
sults. We integrated the algorithms presented in this paper
into our visual exploration tool called Vizdom [3].

Figure 2 shows a storyboard of how a exploration session
looks like to detect a Simpson’s Paradox during an explo-
ration session: Eve already has filtered down her dataset
to look at patients from a particular demographic and with
certain types of blood testing result values. Eve is now in-
terested to see percentages of such patients that have blood
diseases grouped by age groups (kids and adults). From

looking at the histogram in (A) it seems like kids are more
prone for these types of diseases. Afterwards, Eve however
notices that the system displays a warning (yellow box). (B)
By dragging out the warning, the system presents a set of
visualizations showing that when accounting for the lurking
variable “digestive disease” the trend reverses (i.e., kids are
less prone for blood diseases for both, w digestive diseases
and without).

3. DETECTION ALGORITHMS
Automatically detecting if a visualization might be im-

pacted by the Simpson’s Paradox is challenging; it requires
to check if the shown relationship for any possible group-by
combination will reverse.

In the following, we discuss first the näıve algorithm to
find a potential Simpson’s Paradox that enumerates all pos-
sible combinations and afterwards present more efficient al-
gorithms.

3.1 Naïve Algorithm
The näıve procedure for detecting a Simpson’s Paradox is

shown in Algorithm 1. The main idea of the detection algo-
rithms is that a user is currently looking at a visualization
over a table T such as a histogram or a pie-chart that re-
sult from computing a relative aggregate over an attribute a
such as average or a percentage grouped by a given attribute
g. In our example in Figure 1 this could be the percentage
of admitted students grouped by gender. The group-by at-
tribute g is typically a binary attribute that only takes two
values. For this group-by attribute our algorithm next com-
putes the trend; i.e., for a given ordering of the group-by
values, it analyses if the aggregate values are ascending or
descending. In our example, we assume the ordering is men,
women and the trend is descending.

Based on the aggregated result, the detection algorithm
tries to find an additional group-by attribute g′ (e.g., de-
partment, citizenship, etc.) in the table T that reverts the
trend if the user would drill-down into that attribute as well
(i.e. if she groups by g and g′). In the näıve algorithm,
we therefore iterate over all possible candidate group-by at-
tributes in T and stop once we find a group-by attribute g′

that reverts the trend. While the first group-by attribute g
has to be a binary group-by attribute with only two distinct
values (e.g., male vs. female) , the second group-by attribute
g′ can have an arbitrary number of distinct values. In that
case, we allow that the trend does not need to revert for
all group-by values in order to detect a paradox. Instead,
we allow the user to define a relative threshold t for how
many values the trend needs to revert (e.g., we set t to 60%
or 0.6 in our algorithm). In our example in Figure 1, the
trend only reverts for 4 out of 6 departments which is above
our threshold and would thus be reported as a Simpson’s
Paradox.

3.2 Optimization 1: One-pass Algorithm / Row
and Column

When implementing Algorithm 1 in a näıve way, we can
use a row-based representation of T and scan T every time
we call computeTrend; i.e., for each candidate group-by at-
tribute g′ we enumerate. A first optimization of the näıve
algorithm is to use a one-pass algorithm that only needs to
scan one time over T and computes the aggregates for all



Algorithm 1: Näıve Detection Algorithm

Input : Table T , Group-by Attribute g, Aggregate Attribute a
Output: Group-by Attribute s for Simpson’s Paradox

1 Algorithm firstSimpson(T , g, a)
2 s← null;

// trend can be asc or desc
3 trendG← computeTrend(g, a, T);

4 foreach Attribute g′ ∈ T − {a, g} do
5 trendG′ ← computeTrend({ g , g’ }, a, T, t=0.6);
6 if reverts(trendG,trendG’) then
7 s← g′;
8 break;

9 end

10 end
11 return s;

possible g′. For enabling this in an efficient way, we store T
in a row-wise manner.

However, for our use case of data exploration, it is often
desirable that the time a detection algorithm to find the first
paradox is minimized to warn the user as early as possible.
This is particular true for IDES where all results are approxi-
mated to guarantee interactive latencies. Therefore, another
variant is that we store T in a columnar fashion and scan
only over one pair of columns g′, a when we call the func-
tion computeTrend. This algorithm scans the aggregate at-
tribute column a multiple times and thus has a higher scan
overhead than the row-based one-pass algorithm mentioned
before. However, if the algorithm detects a Simpson’s Para-
dox when enumerating one of the first group-by columns g′,
it can save I/O (which we exploit in Optimization 3 further
by steering the algorithm).

3.3 Optimization 2: Approximate Algorithm
As a second optimization of the before-mentioned one-

pass algorithm, we have implemented two approximate al-
gorithms (row- and column-based) that avoid reading the
complete table T . The column-based version is shown in
Algorithm 2.

The main idea is that we use ideas from approximate
query processing to estimate the aggregate computed on the
attribute a such as average or a percentage grouped by a
given group-by attribute by calling estimateTrend. Fur-
thermore, for each distinct group-by value we compute a
confidence intervals. In our implementation, the aggregate
is computed based on the tuples seen so far and the confi-
dence interval ε for each group-by value is derived using the
following variation of Hoeffding’s inequality (where maxa
and mina are the maximum and minimum of attribute a, n
is the number of rows seen so far, and p is the confidence):

ε = (maxa −mina) 2

√
1

2n
ln(

2

1− p )

Based on the confidence intervals for each group-by value,
we can define the trend if the intervals of the individual
group-by values do not overlap anymore, which is the most
important fact for detecting a Simpson’s Paradox. To that
end, the function estimateTrend can return not only the re-
sult that the aggregates of the group-by values are ascending
or descending but also return unkown (if the confidence in-
tervals overlap). For example, let us look at the upper table
of Figure 1. Assume that the confidence interval for both
aggregates is 0.5 (i.e., 50%). In that case the confidence in-
tervals would overlap and estimateTrend would return un-
kown. Once the trend is not unkown, the approximate com-

putation terminates. Moreover, as mentioned before when
computing the trend for the candidate group-by attributes
g′, we allow the user to define a relative threshold t for how
many group-by values the trend needs to revert (e.g., we set
t to 60% or 0.6 in our algorithm).

Finally, in order to further optimize the execution, we do
not iterate over the rows of T individually but use fixed-size
blocks.

Algorithm 2: Approximate Detection Algorithm

Input : Table T , Group-by Attribute g, Aggregate Attribute a
Output: Group-by Attribute s for Simpson’s Paradox

1 Algorithm firstSimpson(T , g, a)
2 s← null;

// trend can be asc, desc, or unkown
3 foreach Row r ∈ T do
4 trendG← estimateTrend(g, a, r);
5 if trendG! = unkown then
6 break;
7 end

8 end

9 foreach Attribute g′ ∈ T − {a, g} do
10 foreach Row r ∈ T do
11 trendG′ ← estimateTrend({ g , g’ }, a, r, t=0.6);
12 if trendG! = unkown ∧ reverts(trendG,trendG’) then
13 s← g′;
14 break;

15 end

16 end

17 end
18 return s;

3.4 Optimization 3: Steered Approximate
For the last optimization, the observation is that after

scanning the first rows of T it is often clear that for some can-
didate group-by attributes g′ a Simpson’s Paradox is more
likely than for other candidate group-by attributes.

The intuition is shown in Figure 3. Assume the user looks
at the admissions of students per gender and sees that there
are more males than females as shown in Figure 3 on the very
left. In order to warn the user about a potential paradox,
the system enumerates different different additional group-
by attributes (e.g., departments, gender in that case) to find
out for which attribute the trend might revert. As shown on
the right hand, after scanning the first rows of the table T ,
simply by looking at the approximate result one can see that
the likelihood to detect a Simpson’s Paradox when grouping
by departments is much higher than grouping by citizenship.

The main notion of the steered algorithm is to leverage
the fact that some group-by attributes are more likely to
reveal a Simpson’s Paradox than others. Thus, instead of
enumerating over all candidate attributes g′ in a sequential
manner, we try to steer the algorithm to the most promis-
ing attribute. To that end, the detection algorithm can be
cast as a k-armed bandit problem where as each candidate
attribute g′ is modeled as one arm. The reward of each can-
didate attribute g′ is defined as probability that the trend
reverses. This can be modeled by using one random vari-
able for each distinct group-by value X1, X2, ..., Xn and and
then computing the probability of P(X1 < X2, ... < Xn) if
X1 > X2 > ... > Xn holds for g.

For computing this probability, we use the following for-
mulation:

P(X1 ≥ X2) = P(X1 −X2 ≥ 0)
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Figure 3: Likelihood of a Simpson’s Paradox

Assuming a normal distribution for X1 and X2, we can com-
pute the mean and variance for Z = X1 − X2 as µz =
µx1 − µx2 and σ2

z = σ2
x1 + σ2

x2. Note that the mean of X1

and X2 can be approximated while streaming over T . Based
on µz and σz, we can than then compute P(Z ≥ 0). This can
easily be generalized to P(X1 < X2, ... < Xn) with n ran-
dom variables and thus directly be used as a reward function
for the k-armed bandit problem.

4. EXPERIMENTAL EVALUATION
For our initial evaluation, we used a real-world data set

that describes flight delays and has a size of 12GB uncom-
pressed 2 and tested the different algorithms as described in
the section before. For running the experiments, we used a
machine that has two Intel Xeon E5-2660 v2 processors (each
with 10 cores) and 256GB RAM. As operating system, we
used Ubuntu 14.01 Server Edition (kernel 3.13.0-35-generic).
The prototype algorithms were all implemented in C++ im-
plementation and used 10 threads for the execution.

An important factor is to evaluate the efficiency of our al-
gorithms for data exploration. A recent study [9] has shown
that visual delays of more than 500ms tend to decrease both
end-user activity and data set coverage due to the reduction
in rates of user interaction, which is crucial for overall obser-
vation, generalization and hypothesis. For our algorithms,
we also want to warn the user at interactive speeds about a
Simpson’s Paradox while she is looking at a given visualiza-
tion. Two important factor that influence the runtime of our
detection algorithms are the number of candidate group-by
attributes that need to be enumerated as well as the num-
ber of rows in a data set. In the following, we therefore
analyze the runtime of all detection algorithms when vary-
ing these two parameters. We report the time it takes until
the algorithms find the first paradox.

Exp 1a - Varying #of Attributes: In the first ex-
periment, we executed the different detection algorithms
by varying the number of candidate group-by attributes g′

available in the data set that need to be enumerated by
our detection algorithms from 1 − 6. Moreover, we fixed
the initial group-by attribute g and the aggregate attribute
a. This simulates the scenario where the user is looking a
particular visualization over a and g (e.g., the histogram of
admissions by gender) and the system enumerates all possi-
ble 1− 6 drill-downs to the different candidate using {g, g′}
as group-by attributes. Figure 4(a) shows the results.

The näıve algorithm performs the worst and requires more
than 2s for 6 attributes. The reasons are that this algo-
rithm requires multiple passes over the data and needs to

2http://stat-computing.org/dataexpo/2009/the-data.html
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Figure 4: Efficiency of Detection Algorithms

compute multiple drill-downs for a growing number of can-
didate group-by attributes g′. The second algorithm that we
analyzed is the one-pass algorithm that uses a row-oriented
format. This already performs much better than the näıve
since it requires only one pass independent of the number of
attributes. This is directly reflected in the runtime which is
approximately 6× faster for 6 candidate group-by attributes.
Moreover, we can see that this algorithm already achieves
interactive latencies of less than 500ms. However, many
real-data sets are often much larger than 12GB and typi-
cally have more attributes than only 6. To that end, the
runtime on larger data sets with more attributes will be
much higher and exceed the interactiveness threshold. The
third algorithm, is the approximate algorithm that uses a
row-oriented format. Compared to the one-pass algorithm,
the runtime grows much slower with a increasing number
of candidate group-by attributes that need to be enumer-
ated. Finally, our steered algorithm is the most optimal and
the runtime is the least sensitive towards the number of at-
tributes that need to be enumerated.

Exp 1b - Varying Data Size: In this experiment, we
used the same data set as before but fixed the number of can-
didate attributes to 5 and varied the number of rows in T
by creating samples of different sizes (10%− 100%). While
the näıve and the one-pass algorithm grow with the data
size and exceed 500 ms, the approximate and steered algo-
rithm are almost independent. Moreover, again the steered
algorithm is the most optimal one since it exploits the most
likely candidate first.

5. RELATED WORK
While several authors have focused on the important issue

of discovering unexpected/surprising patterns in data min-
ing [11, 12, 13, 8], only a few algorithms discuss on how to
detect a Simpson’s Paradox [5, 7]. However, all these algo-
rithms have not been designed to efficiently warn the user
in an exploration session at interactive speeds. For exam-
ple, [5, 7] discuss algorithms that are similar to the idea of
our näıve algorithm, which is neither able to warn users at
interactive speeds nor scales to larger data sizes or data sets
with many different attributes.

Another interesting approach for detecting a Simpson’s
Paradox is discussed in [4]. Different from [5, 7], in [4]
the authors discuss the idea of a magnitude of a Simpson’s
Paradox. Different from our approach, the paper however
does not use the magnitude to steer the computation and
achieve interactive response times. Instead the authors use
the magnitude of a Simpson’s Paradox to rank the different
paradoxes presented to the user.



6. CONCLUSION AND FUTURE WORK
In this paper, we made a first attempt to automatically de-

tect the Simpson’s Paradox For the detection, we presented
different algorithms that leverage ideas from approximate
query processing and steering using a k-armed bandit strat-
egy, which significantly improved the run-time to detect a
potential Simpson’s paradox. For the future, we see two
main directions.

Finding only statistical significant Simpson’s Para-
doxes: By automatically trying to hundreds or more at-
tribute combinations to find a potentially Simpson’s Para-
dox the chance increases to mark a random occurrence as a
Simpson’s Paradox. The underlying assumption here is, that
the aggregates/visualization are actually used to derive in-
sights (e.g., that an admission bias exist preferring men over
women) rather than just a descriptive statistic (e.g., more
men were admitted than women), and as such, that the in-
sight and the reverse of it (i.e., caused by the Simpson’s
Paradox) have to be statistical significant. This problem
is strongly related to the visual recommender or hypothe-
sis finder problem as outlined in [1] and likely solvable by
similar solutions.

Detecting other Statistical Pitfalls: We believe that
the here devised techniques based on bandits could poten-
tially be modified to find other visual problems. For exam-
ple, we believe that we could use a similar bandit-based ap-
proach to discover Pseudoreplication, a very common prob-
lem with data collected in life-sciences. Furthermore, an-
other challenge is to test for the many different pitfalls at
interactive speeds. One idea is to memoize intermediate re-
sults of our detection algorithms and reuse them to detect
other pitfalls.
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