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Abstract

Autonomous agents are increasingly deployed in complex social environments
where they not only have to reason about their domain goals but also about the
norms that can impose constraints on task performance. The intelligent trade-offs
that these systems must make between domain and normative constraints is the
key to their acceptance as socially responsible agents in the community. Inte-
grating task planning with norm aware reasoning is a challenging problem due
to the curse of dimensionality associated with product spaces of the domain state
variables and norm-related variables. To this end, we propose a Modular Norma-
tive Markov Decision Process (MNMDP) framework that is shown to have orders
of magnitude increase in performance compared to previous approaches. Because
norms are both context-dependent and context-sensitive, context must be modeled
effectively in order to find activation and deactivation conditions for norms. To
this end, we propose an expressive, scalable and generalizable context modeling
approach to understand norm activations in social environments combining the ex-
pressivity of propositional logic with the compactness of decision trees. We show
how we can combine our context model with our MNMDP framework to support
norm understanding as well as norm enforcement for real systems. Human exper-
iments were conducted to collect data relating context and norms to populate our
framework. We discuss the results and inferences obtained from these data con-
firming the complexity of the relationship between contexts and norms and the
necessity of empirical data to building a scalable norm-aware reasoning frame-
work for autonomous systems. We demonstrate our approach through scenarios
in simulated social environments in which agents using the framework display
norm-aware behavior. In order to discover which norms get activated in various
contexts and with what priorities, we performed a set of extensive human experi-
ments and show how these results constitute the basis for building context-based
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norm aware systems.
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1. Introduction

As autonomous systems become more involved in our daily life, their respon-
sibilities have expanded from industry and military to more personal scenarios
like childcare, personal assistant or housekeeping. Instead of only concentrating
on the accomplishment of the assignment, autonomous agents have to consider
human’s expectation and preference in those tasks for them to be accepted and
trusted. However, constraints in social interactions are usually fuzzy and soft;
thus cannot be explicitly programmed as hand-crafted functions/rules in a unified
fashion. One important factor that informs the appropriateness of actions is the
set of norms within a particular community. Norms, such as prohibitions, per-
missions, obligations, are the socially agreed upon guidelines of behavior which
are acknowledged by most of the members of a community [1]. With the compe-
tence of reasoning about norms, intelligent agents can align their behaviors with
human values to better collaborate and communicate with people in a socially de-
sirable way. Thus it is critical for the robots to incorporate social norms in their
decision-making process in performing their various tasks.

We are interested in the reasoning of robots engaged in long term autonomy,
where they perform a set of tasks in one or multiple domains and when appropri-
ate, engage in normative reasoning to ascertain the consequences of their actions
so as to determine their best course of action. There exist few works in the com-
munity which aim to tackle this important problem [2, 3]. However, the existing
literature suffers heavily from the curse of dimensionality problem and are hence
infeasible in real systems. We also tackle the more challenging problem of com-
putational models for reasoning that can be well suited for long-term autonomy
applications, where the set of norms that the agent has to follow and the environ-
ments that the agent is deployed in, change over time.

Currently, there is little research about generalizable representations and mod-
els of environmental context for modeling social interactions. The social science
literature [4] [5] have reported that norm activation is dependent on environmen-
tal and social context. Additionally, we claim that the determination of priorities
among different norms or even between instances of the same norm depends on
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the environment where the agent operates. For example in Figure 6, the robot
follows the safety norm of saving the child in the context where the child gets too
close to a fire before following another instance of the same safety norm which
makes the robot extinguish the fire. On the other hand, in the context where the
child is away from the fire, the norm precedence changes and the robot’s priority
is the instance of the safety norm that entails it to put out the fire before saving the
child. However, the specific representation of context-dependent norm activation
framework in terms of perceiving context, norm enforcement and policy execu-
tion is an open problem which this work addresses in detail. Since it is impossible
to elicit all possible situations and their norms that the robot will operate under,
these systems must be able to learn the mapping between environmental context
and norm activations directly from human interaction and also be able to gener-
alize to unseen contexts. On top of the above factors, our work also focuses on
scalability, which is the most crucial factor with the choice of the context model
in terms of deployment in autonomous systems.

A robot operating openly in society is likely to encounter an immense number
of situations that require adherence to differing human norms. If a representation
such as an MDP is used to guide behavior this leads to a computationally infeasi-
ble solution in which every norm must be considered at every step. In this paper
we propose a novel solution in which smaller MDPs incorporating only those
norms active in particular contexts are indexed and accessed through a context
tree. Section 2 describes Related Work followed by Contributions in Section 3.
Section 4 describes a representation for norms. Section 5 introduces the Modular
Normative MDP and illustrates its working using a roadway simulator as well as
empirical evaluation against previous approaches. Section 6 describes our rep-
resentation of the environmental context and its organization within our context
tree approach. We also demonstrate the implementation of our context model in
custom-built Minecraft environments as well as performance studies which illus-
trate the scalability of our work. Section 7 describes the design of our human
experiments used to identify norm priorities and context hierarchies, as well as
detailed analysis and results from our experiments.

2. Related Work

BOID [6] and NoA [7, 8] present architectures illustrating the potential for
norms to be part of the agent behavior. Some authors have studied norm-aware
planning algorithms [9, 10, 11], but not from a utilitarian and probabilistic per-
spective. Further, recent papers [12, 2] propose a framework similar to another
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work [13], where Markov Decision Processes (MDPs) are used to combine the
agent’s domain planning with normative constraints and sanctions, but fail to ad-
dress the curse of dimensionality problem associated with the large joint state
spaces when combining the domain state variables with the normative variables.
[14] provides an MDP formulation for scheduling in randomized traffic patrols
in a real domain using a game-theoretic approach by modeling the trade-off as
a bi-objective optimization problem, but only consider a specific set of interac-
tions between the agents. [15] provide mechanisms for detection and resolution of
normative conflicts. A review of approaches for detection and resolution of nor-
mative conflicts is presented in [16]. More recently, a computationally scalable
framework, called Modular Normative Markov Decision Processes (MNMDPs),
was proposed for integrating domain goal and norm reasoning [17].

In order to integrate normative constraints into the domain task planning, there
is a need to model and represent social interactions effectively. However, very few
works in the literature shed light on scalable, practical, and generalizable systems
for modeling social interactions for norm inference. Recent work [5] explores
the relationship between environmental context and norms but their formulation
doesn’t have any explicit context representation and lacks generalizability, and
feasibility for real systems. [18] represent norms using deontic logic and learn
them under uncertainty from human data but again don’t use any explicit context
representation for modeling social interactions. In their work, norms are only
differentiated based on location and not other potentially important contextual
factors (such as the assigned task of the agent), context-sensitive norm activation
is ignored, and the computational complexity of the norm-learning algorithm is
not scalable. [19] represent normative constraints using Linear Temporal Logic
(LTL) and present an approach to determine norm priorities from behavior, which
is limited by restrictive assumptions such as considering that the violation cost
for norms is only conditioned on the duration of the violation. Additionally, their
algorithm computes a product MDP which runs in time exponential to the number
of norms, rendering it impractical for real systems.

3. Contributions

In this work, we address the hard problem of scalable and generalizable com-
putational models for integrating norm aware reasoning with domain goal plan-
ning. We also address this problem from a learning viewpoint, by designing hu-
man experiments to enable norm learning and by developing robust learning algo-
rithms and representations that can model and infer from data.
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Scalable Policy Computation and Execution: A core problem in norm learn-
ing and enforcement is to be able to compute robust policies for executing the
underlying normative behavior. Norms can be viewed as soft constraints that the
agent can violate at the cost of being sanctioned. For example, the optimal execu-
tion of the task of going from point A to point B would be to go as fast as one’s
system can perform. Speed-limits (norm) impose constraints on this ’optimal’
agent task execution. Markov Decision Processes (MDP) are a natural way to
model the soft trade-offs to be reasoned about by the agent such as whether to be
norm compliant and possibly sub-optimal w.r.t the domain task versus executing
domain tasks optimally but ignoring norms. Further, MDPs can be extended to
stochastic and partially observable domains as well. However, modeling the deci-
sion making process directly using MDPs is challenging since it suffers from the
curse of dimensionality problem when dealing with large state spaces that come
up when we try to add an increasing number of normative variables into the do-
main MDP that reasons only about reaching the goal. Our Modular Normative
Decision Process framework [? ] which will be discussed in detail in Section
5 provides a modular, scalable way to compute and execute general normative
policies by using the properties of the norms themselves. Its performance both
in terms of memory consumption and runtime is orders of magnitudes better than
previous approaches as will be discussed in Section 5.2.

Context Representation and Modeling: For the MNMDP framework to be
successful, it needs the knowledge of which norms are active at any given time.
Norms are often sparse in the state-space, but finding when they get activated is
crucial for successful norm enforcement. Norms are not only context dependent
but are also very context sensitive, making it a challenging problem to predict
norm activations just from the environmental context. For example, given the
same task in the same location, different norms can get activated depending on
other factors such as the characteristic of the people present there (e.g. guest,
stranger, owner). Moreover, in many situations, multiple norms can be active at
the same time, with some of them being in conflict with one another. In order to
resolve these norm conflicts, norm priority/importance must be determined. This
calls for a principled way to handle context based activation of a variable num-
ber of norms as well as feasible ways to determine norm priorities. However,
modeling environmental context in a scalable, generalizable fashion and finding
a model that can map it to a set of active norms is an open research problem in
the community, which we address in detail. (1) We employ propositional logic
to expressively represent environmental context, including context with tempo-
ral components; (2) We model the set of environmental contexts in the knowledge
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base using learnable decision trees, which provides significant computational ben-
efits and also helps create a hierarchy of relevant context factors; (3) We propose a
principled approach for integrating social norms into task planning by combining
our context model with the Modular Normative Markov decision process (MN-
MDP) framework [17]; (4) We propose extensions to support generalization to
unseen scenarios using SimRank [20].

Learning Norm priorities from human experiments: To determine the
context-dependent norm activation and the ranking of normative priorities to use
in our framework, we collected human data using a survey deployed with Ama-
zon Mechanical Turk. This survey is the first study to collect data on attitudes
of people on normative behavior of domestic robots and study relative priorities
among norms for this domain. We observed important properties of the human
norm network including 1) dynamic norm priorities over context, 2) diverse con-
text sensitivities of norms, 3) weighted contextual features in norm activations,
and 4) complicated interactions between context features and norms. The method
and result of human experiments will be discussed in detail in Section 7.

4. Norm Characterization

Ethical principles embody societal values and form the basis of social norms
and laws. Norms are complex entities with many different attributes [21]. Norms
have modalities [22], namely obligations, O, permissions F and prohibitions P
and they apply to the normative agent, who is termed the addressee of the norm.
Sanctions are imposed on the addressee by the issuing authority (e.g. the gov-
ernment), if the norm is violated. A beneficiary of a norm is the set of agents,
including the addressee that benefit (or suffer) the consequences of norm com-
pliance or violation. Norms also have a spatial and temporal extent that could
be enforced to a group of addressee agents. An example of this would be time-
constrained special permissions that apply to specific regions given to agents in
case of a regional emergency.

Norms have a life-cycle associated with them while they belong to the knowl-
edge base. The status of a norm can be activated, violated, contradicted, de-
activated/expired, and obsolete/revoked. A norm gets activated if its activation
conditions fit the current state. Additionally a norm has a utility and a priority.
Let E be the set of all possible well-formed formulae comprising first-order pred-
icates over terms (constants, variables and the operators ∧, ∨, and ¬). Following
conventional notation from the normative and MDP literature, we define a norm
as follows:
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Definition 1 (Norm Representation) A normN is represented by a tuple 〈ν,Σ, φn,
φa, φd, σ, δ, π〉 where ν ∈ {O, P , F} denotes the deontic modality and Σ is the
set of states where the norm applies. The normative context φn is the set of states
in Σ where ν applies, depending on the norm modality. Conditions φa, φd de-
note the activation and deactivation condition respectively, and the sanction σ for
violating it, where σ is a tuple 〈β, φs〉 with β : Σ × A × Σ → R− as the (mon-
etary) penalties, A is the set of actions, and φs ∈ E is the constraint on actions
imposed as a sanction. For example, a moving violation in the traffic domain may
incur a monetary penalty and loss of driver licence that restricts future actions of
the agent. Lastly, δ represents the authority that issued the norm and π ∈ Z+

represents norm priority describing the relative importance among norms.
Definition 2 (Action-Norm Conflict) An action-norm conflict occurs if an action
a ∈ A of the addressee α contradicts one or more activated norms.
For example, if an action of the robot α is go to bedroom and bedroom privacy
norm which entails robot entry prohibition is activated, the resulting state satisfies
location(α, bedroom) which violates the prohibition.
Definition 3 (Normative Conflict) A normative conflict occurs if two or more
activated norms contradict one another. In other words, a conflict arises when a
state is simultaneously prohibited and permitted/obliged, and its variables have
overlapping values.
For example a norm conflict arises when an activated norm obliges the robot to
be in the bathroom while another activated norm prohibits the robot from being
in the bathroom. The most common way of resolving normative conflicts is by
defining priorities. We have conducted human experiments [23] discussed in de-
tail in Section 7 to identify relationships between norms and contexts in domestic
environments and determine priorities among these norms. To resolve norm con-
flict, the highest priority norm is considered for compliance whereas conflicting
lower priority norms get violated.

5. Modular Normative MDP

We are interested in designing agents that are norm-autonomous, namely agents
that reason as to whether to violate or comply with norms. We believe that such
agents are more realistic in the context of long-term autonomy, as opposed to
agents whose norms are automatically regimented by hard-wiring them into the
agent. In one of the most relevant works using MDPs [2], it is assumed that the
norm set is invariant and determined at design time. Since norms are invariant, [2]
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can do the normative reasoning for all states before runtime. Once norm reasoning
is done, the norms are excluded from the framework by encoding only the sanc-
tions from norm violations in the states. This has two limitations: (a) considering
all norms (full normative model) at once is extremely computationally intensive,
and (b) considering norms to be invariant is unrealistic. Our Modular Normative
MDP (MNMDP) framework proposed in [17] alleviates these core problems by
(1) allowing for efficient computation of integrated task and normative reasoning
by modularizing the full-normative MDP into much smaller MNMDPs, (2) MN-
MDP allows for efficient addition/removal of norms as the robot engages in long
term autonomy operation and human interaction.

5.1. Markov Decision Process with Norms
A Markov Decision Process (MDP) with norms is represented byM = 〈S,A,

R, T, γ,N〉, where S denotes the finite set of states, A denotes the finite set of
actions, R : S × A × S → R is a reward function, T : S × A × S → [0, 1] is
a state-transition function, and γ ∈ [0, 1] is the discount factor. The normative
knowledge base N is a set of norms that apply inM.

Figure 1: Computation of modular normative MDPs (MNMDPs)

Figure 1 shows the overall process used in computing the policies πi for each
MNMDPMi. We first construct a domain MDPM0, i.e. not including norms in
the states. We then use the domain Σ of each norm N in the normative knowledge
base and compute the MNMDPMi,j,k when the domain of the norms N i, N j and
Nk overlap and don’t conflict with one another. In case of any conflicts between
a subset of norms contained in any MNMDP, we resolve it using learned norm
priorities derived from our human experiments detailed in Section 7. This modular
normative MDP is much smaller than one that would contain the whole norm
set. If a norm N i has no domain overlap with any other norm in the norm set,
then this enables us only to compute a MNMDP Mi which reasons only about
the implications of the norm N i in addition to the task planning. This way, we
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pre-compute all the necessary MNMDPs that would be required for the given
environment. We then compute the optimal policy using MDP solver algorithms
such as value/policy iteration. With Bi referring to the penalty function for the
norm N i, we formulate the reward function Ri for each MNMDPMi as

Ri(st, a, st+1) = R0(st, a, st+1) + Bi(st, a, st+1, N
i) (1)

Using this, for each MNMDPMi we compute the value function V for each
state s ∈ S as shown in Equation 2.

V i
k+1(st) = max

a∈Ai

[ ∑
st+1∈S

P i(st+1|st, a)(Ri(st, a, st+1) + γV i
k (st+1))

]
︸ ︷︷ ︸

Qi
k+1(st,a)

(2)

until convergence where k refers to the current iteration. Using the converged
value function V , we compute the optimal MDP policy πi for each MNMDPMi.

Figure 2: Computation of action at for the state st during execution

Figure 2 explains the policy execution at runtime, using the pre-computed
MNMDP policies as explained above. During policy execution at time t with
state st ∈ S, let Nt ⊆ N represents the set of activated norms associated with
st. The robot with active norms set Nt will select the best action at according to
the optimal policy πt for the corresponding MNMDP Mt, so that the robot can
achieve domain-specific goals while satisfying the normative constraints. In this
way, the robot will only consider the normative constraints in the states where the
normative constraints apply, avoiding the unnecessary incorporation of all possi-
ble norms in its current MDPMt. We refer the reader to [17] for further details
about the approach.
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(a) Direction and Speed-
limit norms

(b) Direction, Speed-limit
and STOP sign norms

(c) Hospital Emergency,
Direction, Speed-limit and
STOP sign norms

Figure 3: Trajectories of the agent in different norm constrained environments in a traffic
example

5.2. Experimental Results
5.2.1. Roadway Simulator

We illustrate the efficacy of our MNMDP framework on a custom-designed
roadway simulator encapsulating traffic rules such as speed-limits, STOP signs,
and lane directions. The videos for these experiments can be found at this link:
http://bit.ly/2GA4HLj. Figure 3 shows the output policies generated by our MN-
MDP framework for the four different scenarios. Lane directions to be followed
are marked using arrows in the four vertical roadways H1-H4 and the speed-limit
enforced is shown using red font on the highway signs. In the scenario represented
in Figure 7(a) where the agent must follow the speed-limit norm on H1 and H3
in addition to the existing lane norms, the agent follows the speed limits imposed
on H3 and slows down. In Figure 7(b), the agent encounters an additional STOP
sign norm in addition to the norms discussed in the previous example. It fol-
lows the STOP sign placed in H1 as illustrated by the blue circle. In Figure 3(c),
the agent encounters a hospital emergency in addition to the lane direction rules,
speed-limit on all four vertical highways as well as a STOP sign norm on H4.
However, the agent choose to disregard all other norms in favor of reaching the
goal as quickly as possible, since the hospital emergency norm (to save a human
life) which conflicts with the other norms is given a higher priority.

5.2.2. Empirical Evaluation
In order to validate the scalability and efficiency of the proposed MNMDP,

we compare the performance of our work against a fully normative MDP, which
reasons about all the norms together by including all norms in the state space.

10

http://bit.ly/2GA4HLj


(a) Log of computation time
against number of norms

(b) Average Cumulative Dis-
counted reward

Figure 4: Comparison of computation time of our MNMDP against the full normative
MDP and comparison of cumulative reward of our MNMDP policy, full normative MDP
policy and domain MDP policy.

For these experiments, we construct a domain MDPM0 with a random transition
function T and a sparse, random reward function R. The number of norms |N |
is a parameter that can be varied during evaluation. Each of the norms can be
characterized by a fixed number of norm state and action variables, which are both
chosen randomly. These settings are used so that we can mitigate any structural
bias introduced by analyzing a set of hand-crafted examples, as well as to test the
limits of our system with an increasing number of norms.

From Figure 4(a), we can see thatKth order interactions take xK time. For the
fully normative MDP, which considers all the norms in the norm set together, this
becomes x|N |, making it exponential in the number of norms. Figure 4(b) shows
the average cumulative discounted rewards for the fully-normative MDP policy,
our MNMDP policy, and the domain MDP policy. Note that the domain MDP
policy disregards all normative constraints imposed on the system. We observe
the general behavior that the cumulative reward decreases as the number of norms
increases. We also observe that our MNMDP policy is only slightly sub-optimal
to the fully-normative policy, which reasons in a very high-dimensional space,
making it intractable for real systems.

6. Modeling Environmental Context to Determine Norm Activations

To be socially compliant, agents must determine which norms are relevant, or
active, in a given scenario and leverage this information to robustly adapt their be-
havior. A critical challenge for creating such socially compliant agents is enabling
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these agents to use their low-level sensory observations of the environmental con-
text to identify the appropriate normative behavior. This environmental context
representation and the mapping from context to norms needs to be generalizable
and learnable, especially for long-term autonomy applications where the agent
could encounter novel context factors or changing user preferences. In such cases,
the framework must scale, be robust enough to generalize to novel environmental
contexts, and have the capability to continuously learn and adapt in response to
changing user preferences and shifting socio-cultural norms. In this section, we
detail our expressive and generalizable computational framework for modeling
social context by combining logic-based approaches from artificial intelligence
with data-driven, machine learning techniques.

6.1. Representing Environmental Context with Propositional Logic
To represent environmental context, we use propositional logic. With this

approach, we model entities in the state, such as the various household objects
and attributes, with atomic propositions and the interactions between the entities
with logical connectives (e.g. AND, OR). Chaining connectives together enables
us to build and express complex, intricate context conditions.

6.1.1. Temporal Logic for Time-Based Context
Because some of the interactions have a temporal component, we must model

the flow of time in our logic. One formal logic that enables this capability is
Linear Temporal Logic (LTL), which is a modal temporal logic in which one can
define and evaluate propositions over a sequence of states, or paths [24]. A recent
extension to LTL, called time window temporal logic (TWTL) [25], was pro-
posed for reasoning about temporal events with more strict time constraints. The
TWTL framework enables formalization of tasks with various time constraints,
such as performing actions within deadlines, within time windows, in sequence
or in strict sequence, and that are enabling conditions for future actions. To han-
dle time-based normative constraints, we utilize the expressivity of both LTL and
TWTL for describing various time-bounded contextual variables. We incorporate
some of the operators from LTL and TWTL, as well as introduce additional op-
erators - including action-specific, possessive, and spatial operators - for greater
expressivity in our context representation.

6.1.2. Propositional Logic for Determining Normative Constraints
We define our formula ϕ for modeling environmental context over a set of

atomic propositions AP. Our formula has the following syntax:
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ϕ ::=Hds|Hd¬s|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|¬ϕ1|ϕ1 · ϕ2|[ϕ1]
a,b

|Xϕ1|Fϕ1|�ϕ1|ϕ1Uϕ2|ϕ1Oϕ2|ϕ1 ` ϕ2|ϕ1 † ϕ2

where s is either the “true constant” T or an atomic proposition in AP; and
∧, ∨, and ¬ respectively represent the conjunction, disjunction, and negation
Boolean operators. The concatenation operator · specifies that first ϕ1 must be
satisfied and then immediately ϕ2 must be satisfied. The hold operator Hd with
d ∈ Z≥0 specifies that s ∈ AP should be repeated for d time units and the within
operator [ ][a,b] with 0 ≤ a ≤ b bounds the satisfaction of φ to the time win-
dow [a, b]. The successor (next) operator Xϕ1 specifies that ϕ1 must hold at the
next state, the sometimes operator Fϕ1 is the eventually operator modeling the
case where the condition ϕ1 is eventually true sometime during the execution, the
always operator�ϕ1 specifies that ϕ1 must be true in all states, and the until oper-
ator ϕ1Uϕ2 means ϕ1 until ϕ2. The action operator O represents an action ϕ2 that
is being taken by ϕ1, the descriptive operator ` represents “has”, and the spatial
operator † represents “in” with ϕ1 as the entity and ϕ2 as a location attribute.

We use this logic to express more complex environmental contextual factors
for activating or deactivating norms, such as:

• Context in sequence, which refers to when one contextual variable must
occur after another one. For example, a conversation between a robot’s
owner and their guest can be modeled as follows:

((isOwner()O isTalking()) · (isGuest()O isTalking()))∨ ((isGuest()O isTalk-
ing()) · (isOwner() O isTalking()))

In other words, to be in a conversation, the owner must talk and then the
guest must talk, or vice versa.

• Context within a time window, which refers to when a contextual variable
must occur within a particular window of time according to the time counter
for all agents. For example, person speaking twice within the time window
of [0, 5] can be modeled as follows:

isPerson() O [H2isSpeaking()][0,5]

In other words, the person must speak twice within the first 6 time units
according to the global time counter.
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6.2. Constructing the Context Tree
In this section, we describe the structure of our knowledge base, which con-

tains mappings between environmental context and norm activations. A realis-
tic knowledge base for a domestic service robot will contain a wide range of
scenarios, where each scenario is represented by a long chain of propositional
logic to determine the relevant norms for that scenario. Independently searching
through each of these scenarios to determine the relevant norms is highly ineffi-
cient. Therefore, we elect to structure our knowledge base as a tree, where nodes
represent some context variable(s) that evaluate to either true or false. Like a
decision tree, the most differentiating factors are placed near the root of the tree.

We depart from the traditional binary decision tree construction by permitting
our context nodes to contain an additional attribute. This attribute corresponds
to the set of activated intermediate norms given the evaluation of the evaluation
of the parent nodes leading to the current node. This tree structure helps with
representation and addresses two major problems that may arise in real robotics
systems: (1) partially observable environments and (2) time-critical applications.
In partially observable environments, some of the context cannot be evaluated, so
by using intermediate norm outputs, the robot can still determine norm activations
given the context that it can observe. In time-critical applications, the agent must
make a decision about which norms are activated without reaching the leaves of
the tree, which is enabled by using intermediate norm outputs. Importantly, note
that it is possible to learn these intermediate norm activation outputs using stan-
dard tree-learning algorithms.

Figure 5 illustrates a simple example of modeling a scenario into a compact
decision tree. The root of this tree evaluates whether the hallway is on fire and if
this is True, then the robot checks if the owner is in the hallway. If the owner is
present, then the robot checks if the owner is approaching the fire. If so, then the
norm activation of preventing the owner from incurring harm enables the robot to
save the owner from the fire. On the other hand, if the owner is not approaching
the fire or is not present, then the robot focuses on extinguishing the fire. Note
that the intermediate norm output at the owner-in-hallway node is the output of
the tree based on all the previously traversed nodes - in this case, only the root of
the tree. In the other branch of the tree, where the presence of fire evaluates to
False, the robot checks for the co-existence of itself and the owner in the hallway.
If this is true, the robot determines that the accommodation norm is activated; if
it is False, then no norm is activated. In this case, the intermediate output does
not enforce any norm since no fire was present and the location of the owner is
unknown.
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Figure 5: A simple example of modeling a scenario into a compact decision tree. In this
example, the yellow boxes are associated with the danger norm; the red box is associated
with the protect owner from harm norm.

6.2.1. Constructing the Nodes of the Tree
As previously mentioned, the nodes of our tree represent some contextual vari-

able(s) that evaluate to either true or false. We use the scenarios from recent
work [23] as the input for creating our tree-structured knowledge base by, first,
mapping each of these scenarios to our chained propositional logic formulae. We
split each chained propositional formula based on the occurrence frequency of
each sub-part in the chain throughout the set of contexts in our knowledge base.
We use this co-occurrence as a measure to derive the features of our context tree
so that we can reduce redundancies and hence speed up construction and traver-
sal times. It is intuitive to think of these re-used features as a systematic way to
narrow down the search by differentiating between the scenarios where they are
present/absent. We set a threshold of interaction frequency ft, which we use to
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determine whether an interaction should be separated out into its own node. If
an interaction frequency exceeds ft, then it is separated out into its own node.
If the current interaction does not occur frequently in the knowledge base, then
it remains chained together, as its information gain is low. The threshold ft is a
hyper-parameter that can be empirically tuned for a given application. For exam-
ple, if the formula ”((isOwner() O isTalking()) · (isGuest() O isTalking()))” (let’s
call it owner-guest talking) occurs in a scenario made up of other propositions
chained to the above formula, but co-occurence frequency of the above formula in
the knowledge base is high, then we can split the chained propositional formula at
owner-guest talking not only to promote reuse, but also to help differentiating be-
tween all the scenarios with the same owner-guest talking interaction to the ones
that don’t.

6.3. Learning the Context Tree
Given a set of scenarios as chained propositional formula, we can split them

into a set of interaction nodes as discussed in the previous section. Some of these
nodes can be much more differentiating than the others. Although the norm output
depends on each specific context that the scenario has, there exists an efficient
order in which we can check the interaction nodes. For example, the robot should
first check the location to see if it is in the bedroom, kitchen, and hallway etc,
and then decide which context needs to be examined according to the location. It
would not check the food allergy in bathroom, but would only do that in the living
room or the kitchen. With a increasing number of scenarios in the knowledge
base, a hierarchical structure of context nodes is an intuitive way to model the
problem. For a wide variety of general scenarios, we need to be able to learn
the most efficient hierarchical representation of the context nodes, such that we
can search and retrieve the norms associated with our scenario as fast as possible.
Hence, we draw tree learning methods from the machine learning literature that
enables us to learn our context trees directly from user data collected in our human
experiments [23], as will be explained in detail in Section 7.

We base our tree construction algorithm on the CART [26] framework. To
help us place the most differentiating nodes closer to the root node of the tree, we
use a multi-variate variant of the Gini impurity measure [27] as our metric. Hence,
as we traverse down the tree, we iteratively refine our output norm activation by
conditioning it on the current context node that is being evaluated. Each of the
leaves of this tree contains the final norm activations for the corresponding paths
traversed to reach them.
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Algorithm 1 Traversing a Context Tree
function SEARCH-TREE(Observation O, Context Tree C, Knowledge Graph
K)

Node P ← GET-ROOT(Context Tree C)
Time T ← INITIALIZE-COUNTER( )
while VALID(P ) do

EVALUATE-NODE(P , O)
if NO-IMPLICATION(P , O) then
P ← SIMILAR-NODE(P ,K)

if IS-NORM(P ) or not OBSERVABLE-NODE(P)
or T ≥ τ then return NORM(P )
else

P ← GET-NEXT-NODE(P , C)
T ← INCREMENT-COUNTER( )

We use data from human experiments [23], as will be explained in Section 7,
which contain independent priority values for each norm class for each scenario.
Thus, we pose our tree learning as a multi-variate regression problem similar to
[28]. We create a dataset D containing Z scenarios with each scenario charac-
terized by an input vector of m different propositional functions X1, ..., Xm. We
have x(i) = (x

(i)
1 , ..., x

(i)
m ) as our features for the ith training instance. Our output

vectors for the d different norm classes are Y1, ..., Yd. The output vector for the ith

training instance is y(i) = (y
(i)
1 , ..., y

(i)
d ) with each y(i)l ∈ [1, 7], l ∈ {1, ..., Z}. We

redefine the impurity measure for our multi-variate learning problem by making
it the sum of squared error over the multi-variate response for each node,

L =
Z∑
i=1

d∑
j=1

(y
(i)
j − ȳj) (3)

where y(i)j denotes the value of the output variable Yj for the ith instance
and ȳj is the mean of Yj in the node, with each split selected to minimize this
sum of squared error. The computational complexity for constructing this regres-
sion tree with m different context features encapsulating Z different scenarios is
O(m Zlog Z). We construct this tree offline before policy execution.
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6.4. Efficiently Traversing the Context Tree
During policy execution, the robot uses its current observation as input to our

context tree to efficiently find the norms that are to be enforced, so that the norm-
sanctioned policies could be retrieved and executed. Algorithm 1 shows the flow
of the tree traversal for any scenario that is part of the knowledge base. Starting
from the root, we update the graph edge activation function α using the current
observation of the agent. After that, we evaluate the current context node’s logic
function using α. If the current node P has no implication for the given observa-
tion O, then we use our approach for generalization using the knowledge graph
K as explained in Section 6.5 to find the most similar substitute with similar se-
mantics and then continue our traversal from there. Given the structure of our
decision tree model, which also stores the intermediate norm outputs, we incorpo-
rate the presence of possible time-constraints and/or partial observability to output
the norm N without reaching the leaf nodes. Once the branch reaches a leaf node,
the search time T is more than a set threshold τ , or the current node P is not
observable, we return the predicted norm priorities given the observed context.
These norm priorities ρ are then used to resolve any conflicts between norms in
our norm set. Note that a set of norms conflict when a state becomes simultane-
ously prohibited by some norm and permitted/obliged by others. After resolving
norm conflicts, we use a set of priority thresholds ρt to estimate the value of our
norm activation function φa and the deactivation function φd which is modeled
as the former’s complement. Hence, we find the set of activated norms from the
predicted priorities. The search procedure for our context tree is executed at each
time step and isO(log n), where n is the total number of nodes in the context tree.

Algorithm 2 shows how our context model couples with the MNMDP frame-
work, where the agent’s observation is used to obtain a norm-sanctioned policy π
at each time-step. As explained in Section 6.2, we build our context tree C from
the given scenarios Z. Then, at each time-step, the agent’s observation is used
to search through the context tree to obtain the active norms N , as explained in
Section 6.4. Then, we use the MNMDP framework to find the pre-computed MN-
MDP policy π, which reasons about the set of active norms, and execute actions
from π. We repeat this process until we reach a terminal state in the MDP. We
show the significant computational advantages of using this approach in Section
6.6.2 compared to a tabular baseline. Note that the knowledge graph K is used
to generalize our approach to scenarios outside our knowledge base, as will be
explained further in Section 6.5.
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Algorithm 2 Full Pipeline for Determining Agent’s Policy
function START(Scenarios S)

Graph K ← CREATE-KNOWLEDGE-GRAPH(S)
Context Tree C ← BUILD-TREE(S)
while Not-In-Terminal-State do

Observation O ← GET-OBSERVATION

Policy π ← GET-POLICY(O, C, K)
EXECUTE-ACTION(π)

function BUILD-TREE(Scenarios S)
Context Tree C ← CREATE-CONTEXT-TREE(S)
return C

function GET-POLICY(O, C, K)
Active Norms N ← SEARCH-TREE(O,C, K)
Policy π ← GET-MNMDP-POLICY(S, N )
return π

6.5. Generalizing to Unseen Context
Although our approach of combining propositional logic with decision trees

makes for an expressive and efficient framework, it cannot directly generalize
to unseen scenarios. One way to achieve generalization is to traverse down the
tree to the node where no further implications are present and then use its partial
norm output. However, this approach can lead to incorrect inferences of norm
activations or deactivations - especially in novel situations.

A better approach is to use similarity metrics to approximate the unknown in-
teraction to some known interaction in a larger knowledge base. To that end, we
construct a k-partite interaction graph using the same nodes in the context tree
and making dense connections between the nodes based on their co-existence in
the scenarios present in our knowledge base. The k different partitions are deter-
mined using a heuristic on the categories present in the node (e.g. agent, action,
location). By using the aforementioned high-level semantic types to partition the
data into a k-partite graph, we restrict the similarity space of a given node to
only its neighbours in the same category. The intuition is that nodes containing
highly similar semantic information will have common connections in the interac-
tion graph. With this approach, when the traversal procedure encounters a context
variable that was previously unseen in a scenario, the knowledge graph is used to
retrieve the most similar context variable. To determine the most similar context
variable, we use the SimRank similarity measure.
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6.5.1. Using the SimRank Similarity Measure for Generalization
SimRank is a well-studied, graph-theoretic structural similarity measure ap-

plicable in domains with object-to-object relationships [20]. Objects and relation-
ships are modeled as a directed graph G = (V,E), where nodes in V represent
objects of the domain, and edges in E represent relationships between objects.
For a node v in a graph, the set of in-neighbors and out-neighbors of v are de-
noted by I(v) and O(v), respectively. Individual in-neighbors are represented as
Ii(v), for 1 ≤ i ≤ |I(v)|; individual out-neighbors are represented as Oi(v), for
1 ≤ i ≤ |O(v)|. SimRank computes similarity scores between nodes using the
structural context in which they appear. The similarity s(a, b) ∈ [0, 1] between
objects a and b is 1 if a = b, otherwise:

s(a, b) =
C

|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

s(Ii(a), Ij(b)) (4)

where C is a constant between 0 and 1.
We decompose the scenarios into the key features, and each scenario contains

exactly one categorical value for each feature. We construct the k-partite graph
by assuming the possible values (aka entities) to be nodes and put a bi-directional
edge linking between two nodes if they both appear in a single scenario. Thus for
each scenario, there are k edges constructed, where k is the number of features.
After processing all the scenarios, some pair of nodes might be linked with more
edges than other pairs, which means the entities represented by the two nodes
appear more frequently together than others.

As we know for each scenario, there is only one value that can be taken for
each feature. It means the edges cannot be formed between two nodes from the
same feature, and the nodes from the same feature form groups. As there are
k features, we have a k-partite graph. Applying the SimRank similarity metric
in Equation 4, we have the similarity metric for each feature accordingly. The
similarity metric explains for each feature, how similar each pair of entities are.
This similarity is based on the intuition that similar nodes are referenced by the
nodes that are also similar. Here we assume if the two entities are linked frequently
by similar entities, they have a high score in similarity. Therefore, when given a
new scenario unseen before, it is firstly checked through the context tree to the
point that it cannot find a reference. Then for this feature that it cannot find a
reference, it picks the branch that is the most similar to its entity in this feature.
Finally when it is led to the most similar available scenario, our model outputs the
same norm activations that are associated with the similar scenario obtained in the
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process.
We illustrate our approach for generalization using the following example.

Suppose the robot has never observed the guest cooking in the kitchen; however,
it has observed its owner cooking in the kitchen. When traversing the context
tree, after encountering the location node (kitchen) and the task node (cooking), it
encounters its first previously unseen context variable: the guest. Using the Sim-
Rank similarity metric in Equation 4 and the knowledge graph, the most similar
context variable to the guest is determined - in this case, the robot’s owner. The
robot’s owner then replaces the guest in the context tree, evaluates to true, and the
search proceeds to the next context variable or corresponding active norm(s). The
active norms for the owner cooking in the kitchen are then used for the scenario
of the guest cooking in the kitchen.

6.6. Experimental Evaluation
In this section, we present our results of the implementation of our model for

representing environmental context and determining norm activations. First, we
deploy our context model coupled with our MNMDP framework as described in
Algorithm 2 in custom-built simulation environments emulating complex social
norms built on top of Minecraft. This shows the feasibility and effectiveness of
our approach for usage in autonomous agents. Then, we proceed to empirical
performance studies aimed at determining the computational advantages of using
our framework for scalability.

6.6.1. Minecraft
We use the Project Malmo platform [29] to construct our scenarios and run

our experiments. Project Malmo is a platform built on top of the open-world
game Minecraft, where researchers can define many diverse, complex problems
for intelligent agents to solve. Despite the large number of environments cre-
ated in Malmo, to our knowledge, no domestic environments currently exist for
the platform. To address this, we created four domestic scenarios for testing our
context-reasoning model (two of which stem from our survey [23]), which we de-
scribe in this section. We use the scenario illustrated in Figure 6, as the primary
scenario to illustrate our results.

As illustrated in Figure 6, in this scenario the robot is monitoring the kitchen
when, suddenly, there is a fire on the stove. At the same time, a child enters the
kitchen and either approaches the fire or approaches the window to look outside.
As soon as the robot sees the fire, the norm to extinguish the fire is activated.
However, when the robot observes the child entering the kitchen, it must decide
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between leading the child out of the kitchen and then returning to put out the fire,
or ignoring the child and immediately extinguishing the fire.

Figure 6: Example stove scenario in Malmo.
The robot (the male figure with black hair) is
monitoring the kitchen when, suddenly, a fire
starts on the stove in the upper left corner. At
the same time, a child (the female figure with
blonde hair) enters the kitchen. The robot deter-
mines if it should first put out the fire or move
the child to a safe area, then put out the fire.

In our scenario, if the child is
far away from the fire, the robot
chooses to first extinguish the fire;
otherwise, it chooses to first redi-
rect the child away from the fire.
After the fire is extinguished, the
robot returns to its original loca-
tion and continues to monitor the
kitchen. If there is no fire, the robot
stays still and does nothing even if
the child comes in and approaches
the stove. In this scenario, it seems
that the two norms of extinguish-
ing the fire and save the child have
conflicts with each other, but indeed
the norm of extinguishing the fire
has been “cached” when the norm of
saving the child has been activated
because the latter has the higher pri-
ority. However, when the child has been saved and the corresponding norm has
been deactivated, the robot resumes the norm of extinguishing the fire based on its
observation on the continuing existence of fire. The video of the implementation
of this scenario can be found here or at https://vimeo.com/319540509.

Implementation details. In order to obtain information about the objects and agents
in the given scene, we tap into Malmo’s symbolic observations. This helps us
build the observation map containing all relevant interaction details required for
our model. We also use the chat box in Malmo, which allows agents to glob-
ally communicate messages with each other, to simulate conversations between
agents. We add this chat observation and a time counter for our sequential tasks
to our observation map. We use the scikit-learn framework [30] for our tree learn-
ing. In order to augment the learning process for the scenarios implemented in
Malmo, we use the additional heuristic that the two most differentiating context
factors are the robot’s assigned task and its location. To match the specifications
of the scenario, we pre-specify the behavior of other agents (e.g. human agent
walking in the hallway) and objects in the environments.
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(a) Memory consumption (b) Average search time

Figure 7: Performance comparison between the tabular approach and our proposed con-
text tree approach. Note that both the X and Y axes are in log-scale.

6.6.2. Performance Study
To the best of our knowledge, our work is the first to provide a framework

for context modeling for norm aware reasoning, and hence there are no existing
benchmarks to evaluate our model against. Hence, we consider a tabular approach
with a populated list of scenarios as the baseline against which we can compare
our performance against. Our experimental setup for these experiments involves
randomizing chains of propositions together to form our interactions. This way
we construct our set of scenarios and build our context tree as in Section 6.2.

Using this experiment, we wish to study the scalability of our approach with
increasingly unbalanced trees. Consider the mean depth of a given context tree to
be dµ and the standard deviation of the tree depth to be dσ. The coefficient of vari-
ation ζ = dσ

dµ
, which the ratio between the standard-deviation and the mean depth

of the tree, capturing the degree of imbalance of the tree for any dµ and dσ. We try
various different ζ against the number of scenarios to show the scalability trends of
our approach. Figure 7 shows the performance comparison between our approach
and the tabular approach. Since the context trees become increasingly unbalanced
with increasing ζ , the memory and search time increase correspondingly, but still
remains close together compared to the baseline. Therefore, the proposed context
tree approach is orders of magnitude better than the tabular approach, making it
suitable for usage in real systems.

7. Human Experiments to learn Normative Preferences

To determine the context-dependent norm activations and the ranking of nor-
mative priorities to use in our framework, we collected human data using a survey
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deployed with Amazon Mechanical Turk. Because domestic service robots are a
vibrant emerging market [31], we focus on scenarios involving domestic robots in
a household environment in our survey (note that the MNMDP framework could
accommodate a much wider range of contexts and norms). When people interact
with domestic robots, their attitudes and acceptance of these robots are influenced
by various issues, such as the robot’s capability to finish a given task, an inva-
sion of privacy that may arise due to the robot’s presence, and numerous potential
safety risks [32, 33, 34, 35, 36]. These concerns reveal how people expect do-
mestic robots to behave in typical social interactions. These expectations can, in
turn, be aggregated as general values or norms acknowledged by the majority of
community members.

7.1. Method
In this section, we detail the methods that we used in our survey. We be-

gin by explaining the design of the scenarios included in our survey, providing
a sample scenario for clarity. We then detail our questionnaire design and our
data collection approach. We conclude by providing information about the survey
participants.

7.1.1. Scenario Design
As defined in section 4, a norm consists of its modalities ν, activation con-

ditions φa, penalties σ and priority π etc. To measure these properties, we tried
to design scenarios to survey people’s attitude towards the normative behavior of
domestic robots. By mapping participants’ preference of potential actions and the
context in scenarios, we could have a measurement of the norm activation condi-
tion as well as the priorities among norms. Inspired by literature on human-robot
interaction and ethics, we considered a non-exhaustive list of norms (Table 1) that
arise in the interaction between humans and domestic robots. This list provided a
guideline for studying people’s attitudes and preferences on the appropriate nor-
mative behaviors of domestic robots.

We distinguish between the following terms when discussing the survey:

• A scenario, or situation refers to the description of the setting where the
robot must choose how to respond.

• An option refers to a possible action that the robot could take in a specific
scenario, which indicates the priority of a certain norm.
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Index Name Modalities Description
1 Safety O Protect human from danger
2 Consideration O Consider human’s feelings
3 Privacy O Protect human’s privacy
4 Security P Disclose sensitive information
5 Efficiency O Finish the given task efficiently
6 Compliance P Violate social rules
7 Obedience O Follow owner’s command
8 Command P Act without owner’s command
9 Accommodation O Accommodate human’s behavior

10 Honesty O Tell the truth
11 Loyalty O Maximize owner’s interest
12 Harm P Harm human

Table 1: Norm List

• Context refers to the physical and social environmental features which are
manipulated within a scenario.

• Norms are the principal expectations, prohibitions and permissions on the
behaviors of domestic robots.

Based on the norm list, we structured scenarios where a robot’s current action
contradicts one or more activated norms (action-norm conflict), or several acti-
vated norms conflict with each other (normative conflict) so the robot would need
to choose the most appropriate action.

By matching norms from the list, we designed 15 scenarios, referred to as
dilemmas, where two or three norms that the robot should obey conflicted. The
robot would have several optional actions to take in the given scenario and each of
them corresponds to the addressing of a general norm. For each scenario, partic-
ipants were required to independently rate their opinion towards each presented
option on a scale of 1 (strongly disagree) to 7 (strongly agree). Participants’ at-
titude towards those options reveals the norm priorities and the severity of the
conflict between norms in a given context. Both the absolute rating value and
relative rank order of options were used to compute the norm priority.

To model the context dependent activation of norms, which refers to the acti-
vation and deactivation condition in the definition, we manipulated crucial context
variables in the scenario to see if those factors influenced people’s attitude. Con-
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text was varied in three aspects: 1) location of the interaction, 2) characteristics
of those in the scenario, including age, number of people, and their relationship
to the domestic service robot owner, and 3) the consequences of robot’s behavior
which varied in severity. By matching variables with different values, several ver-
sions of the scenarios were created, and each participant read a randomly chosen
one. By comparing the answers between participants who read different versions
of the same scenario, we determined the influence of contexts on the activation
and priority of norms.

7.1.2. Sample Scenario
To illustrate the notions of scenario, context, and potential normative actions

of the robots, we provide a running example below, referenced throughout as the
warning of allergy scenario:

Imagine that you are hosting a dinner at your home. You/your robot
finish cooking and are about to serve a dish to your friends/family
members. Your robot detects that one of the guests may be slightly/severely
allergic to an ingredient in the dish through the conversation between
them. He/she didn’t provide allergy information in advance. You and
the guests are mid-conversation. Please rate your opinion toward the
following statements about robot’s behavior.

• The robot should interrupt the ongoing conversation and tell ev-
eryone about the allergy information.

• The robot should discreetly inform you (the robot owner), but
not anyone else.

• The robot should do nothing.

For example, in the warning of allergy scenario, the dilemma was between
three norms ensure safety, consider people’s feelings, and do not violate social
rules. The robot could interrupt the conversation immediately and inform every-
one about the allergy to address the “ensure safety” norm. However, doing so may
embarrass the hosts/owners and guests and violate table manners. An alternative
action of the robot to better consider everyone’s feeling could be discreetly inform
the owner of the situation, but not anyone else. As a consequence, it sacrifices the
opportunity to immediately warn the guest. The third option, “do nothing due
to table manners”, emphasizes compliance with social rules like do not interrupt
ongoing conversations.
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Index Scenarios Norms
1 Reminding events Security, Obedience
2 Warning of allergy Safety, Consideration, Compliance
3 Entering room Safety, Consideration, Privacy
4 Monitoring children Safety, Privacy, Obedience
5 Waxing floor Safety, Efficiency
6 Interrupting conversation Consideration, Efficiency, Command
7 Ordering groceries Privacy, Efficiency
8 Encountering human Safety, Compliance, Accommodation
9 Organizing room Privacy, Efficiency, Accommodation

10 Disposing trash Privacy, Efficiency, Loyalty
11 Reporting evidence Honesty, Loyalty, Command
12 Judging outfit Consideration, Honesty
13 Fire rescuing Safety, Obedience
14 Caring elders Obedience, Consideration
15 Tackling burglar Safety, Loyalty, Harm

Table 2: Scenario List

To measure the activation condition of norms, we manipulated key words in
the scenario descriptions to present the scenario with different context. In the
allergy case, we changed three contextual factors: 1) the agent who is serving the
dish is either the owner or robot, indicating the subject of responsibility, 2) the
relationship between the owner and guests is friend or family, and 3) the danger
of allergy is slight or severe. Variants of scenarios were randomly distributed
between subjects. For example, one participant may read the version where the
consequence of allergy is mild, but the other may read the one where it is severe.

7.1.3. Questionnaire Design
In total 15 scenarios were designed to capture distinct norm conflicts using

the method introduced above. Each participant read all of the 15 scenarios; how-
ever, the context of each scenario randomly varied between subjects. For example,
the allergy case had three contextual variables, each with two different levels that
were changed: responsibility, relationship, and the severity of consequence. This
gives rise to 8 (2*2*2) different versions of this specific scenario that were evenly
distributed to participants. The number of versions for each scenario ranged from
1 to 8 depending on the number and levels of contextual variables. For each sce-
nario, participants were asked to rate their opinion towards every given options
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on a 7-point Likert scale (1- strongly disagree and 7- strongly agree). If one
option was more favored than other choices, it indicates that the corresponding
norm was dominant in the given context. The absolute ratings over all norms
are used to map the norm priorities with certain context variables. To help par-
ticipants better understand the scenario, we provided a detailed description and
corresponding picture for each version of scenarios. Pictures were collected from
the Internet by us to match the described scenario as well as the context. A sample
set of illustrative pictures for the same scenario is shown as Fig. 8, in which the
context is different in the location (home or office), number of people present (a
group conversation or individual conversation), and relationship between people
(friends/colleagues/families). Before the main section, we included demographic
information questions to collect participants’ gender, age, employment status, ed-
ucational background, familiarity with robots, and primary source of information
for knowledge of robots. After the main section, participants were asked two gen-
eral questions about their acceptance and willingness to purchase domestic service
robots such as those described in the survey.

7.1.4. Data Collection
To combat the limitations of traditional survey methods, such as less represen-

tative sampling [37], we conducted the survey using online platform Qualtrics.com,
and published on Amazon Mechanical Turk for workers to access. Each partici-
pant was paid $1 to finish the 15-minute survey.

7.1.5. Participants
To ensure that the participants from Amazon Mechanical Turk were from the

American population, we first filtered the submissions by their IP address. Then
after removing data of participants that did not finish the survey, or those who
blindly clicked and had an extremely short finishing time, and those who answered
the attention check question incorrectly, we were left with 301 valid submissions.
The sampling population had an average age of 40.6 (SD = 11.6) and the gender
ratio was about balanced (49.28% male, 50.71% female).

7.2. Results
A mapping from the contextual variables and norm priorities was constructed

for use in the computational norm framework. To give a general description of the
collected data, statistical analysis was run to see how contextual features influence
the norm priorities. For each norm, we only considered the scenarios in which
it was involved and run ANOVA for all the contextual variables. For variables
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Figure 8: A sample set of illustrative pictures for the interrupting conversation scenario.
Each of them refers to a group conversation among families at home (upper-left), an in-
dividual conversation between friends at home (upper-right), a group conversation among
colleagues in the office (lower-left), and an individual conversation between colleagues
in the office (lower-right). These pictures were presented with corresponding scenario
descriptions to help participants understand the scene.

with more than two values, post-hoc tests using Bonferroni method were reported.
Since we have in total 11 contextual features and 12 norms, presenting all results
from ANOVAs would be less informative for the purpose of model building. Here
we only selected the most representative to report, to give a general picture of the
human data results.

7.2.1. Safety norm: Protect human from danger
The rating of safety norm was significantly influenced by the Domain goals

(F (2, 2085) = 18.90, p < .001, η2p = 0.9%), Number of people present (F (2, 2085) =
28.70, p < .001, η2p = 2.7%), Characteristic of the people (F (5, 2085) = 124.81, p <
.001, η2p = 23.0%), Importance (F (1, 2085) = 34.24, p < .001, η2p = 1.6%), and
Emergency (F (1, 2085) = 22.25, p < .001, η2p = 1.1%).

Post-hoc comparisons showed that participants thought that the robot should
obey the safety norm more when there were people present, p < .001. As shown
in the left figure of Fig. 9, the ratings of safety norm were higher when the num-
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ber of people in context was one or many compared to none. This finding, along
with the significant difference found in other variables, indicate the context sen-
sitivity of norm priority. Besides the main effect of each feature, there were also
interaction effects between context features on norm priority. The interaction be-
tween characteristic and emergency was significant (F (1, 2098) = 71.39, p <
.001, η2p = 3.3%). For instance in the middle figure of Fig. 9, the level of emer-
gency had little effect on safety norm when there was no specific characteristic for
the agent in context, p > .05. However, when interacting with children, the robot
was expected to consider emergency in the context in order to decide the priority
of safety norm, p < .01. Similar interaction occurred in the number of people and
domain goal factors (F (1, 2101) = 50.02, p < .001, η2p = 2.3%), that the effect of
domain goals on safety norm was different when the number of people varied (as
shown in the right figure of Fig. 9).

Figure 9: Box plots of the safety norm ratings. The upper and lower boundary of box and
two error bars represent quartiles of the sample. The line and rhombus within the box
indicate the median and mean value of the data respectively. Dots outside the error bars
are outliers in the data. The color coding among boxes refers to different variable levels
which is shown in the legend. Left: Safety norm ratings when number of people in the
scenario was different. Middle: Safety norm ratings when characteristic of agent in the
scenario was different. Right: Safety norm ratings when number of people and robot’s
domain goal were different.

7.2.2. Consideration norm: Consider human’s feeling
ANOVA tests showed that context variables Domain goals (F (2, 1201) =

26.88, p < .001, η2p = 4.3%), Number of people present (F (1, 1202) = 44.17, p <
.001, η2p = 3.5%), and Emergency (F (2, 1201) = 22.00, p < .001, η2p = 3.5%)
significantly influenced the activation of consideration norm.
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As shown in Fig. 10, in personal assistant tasks, the robot was not expected
to consider people’s feeling (3.95 ± 2.00) as in cleaning (5.00 ± 1.80) or non-
task situations (4.80 ± 1.96)ps < .001. When the number of people present was
more than one, the robot was more favored to consider human’s feeling (5.28 ±
1.79vs.4.42 ± 1.99) p < .001. In high emergency situations, the consideration
norm was less valued by the participants (3.64 ± 1.94) than in low (4.93 ± 1.86)
or non-emergency situations (4.75 ± 1.95), ps < .001. No interaction effect was
found in the activation of consideration norm.

Figure 10: Box plots of the consideration norm ratings. Left: Consideration norm rat-
ings when robot’s domain goal was different. Middle: Consideration norm ratings when
number of people in the scenario was different. Right: Consideration norm ratings when
emergency level in the scenario was different.

7.2.3. Obedience norm: Follow owner’s command
The influence of characteristics on the obedience norm can be divided into

three levels (F (4, 1199) = 69.14, p < .001, η2p = 18.7%), the first level is when
interacting with children (6.17± 1.25), the obedience priority is the highest. Sec-
ond level is interacting with people in need (elders (5.10 ± 1.68) and disabled
people (5.40± 1.68)). For the third level of ordinary people without special char-
acteristics the priority of following commands was relatively lower (4.20± 1.95).
The degree of danger in the environment significantly impact participant’s ex-
pectation towards the obedience norm. In dangerous situations, people valued
the robot to follow owner’s command more, compared with normal situations.
(F (3, 1200) = 112.79, p < .001, η2p = 22.0%, N/A: 3.69±1.85, low: 5.56±1.57,
medium: 5.11± 1.67, high: 5.92± 1.41).

When the number of people increased, the importance of following the owner’s
command decreased (F (2, 1201) = 89.93, p < .001, η2p = 13.0% N/A: 5.66 ±
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1.50, one: 5.10 ± 1.86, many: 3.55 ± 1.79). Owner’s current task importance
also influenced the priority of the obedience norm (F (2, 1201) = 100.77, p <
.001, η2p = 14.4%, N/A: 5.59 ± 1.58, low: 3.68 ± 1.83, high: 4.51 ± 1.95). Ad-
ditionally, the interaction between number of people and importance of owner’s
task was significant (F (2, 1197) = 26.20, p < .001, η2p = 4.2%). As shown in the
right figure of Fig. 11, the task importance was less influential when there were
many people present compared to other situations.

Figure 11: Box plots of the obedience norm ratings. Left: Obedience norm ratings when
characteristic of agent in the scenario was different. Middle: Obedience norm ratings
when danger level in the scenario was different. Right: Obedience norm ratings when
number of people and task importance in the scenario were different.

7.3. Decision Tree Illustration
Figure 12 shows the top 3 levels of the constructed decision trees using the

categorical context features present in our human experiments data. Danger was
found to be the most differentiating feature of our decision tree. The agent can
then reason about its domain goal in the case where there is low or no danger.
Then if the goal of the agent is to clean, then it takes into account the number
of people present in the environment. For tasks such as personal goal and people
care, it could start looking at relationship of the people present in the environment.
In the presence of danger, the agent then looks at its location where the danger is
present. For private locations inside the house such as bedroom, bathroom etc.
it investigates the presence of an emergency presumably to reason about privacy
related norms. For outdoor locations such as hallway, sidewalk etc., it then looks
at the characteristic of the agent such as beggar, pet, elder, children etc. The tree
is complex and continues on refining the scenarios further and further until it can
differentiate them in terms of the norm activations they entail. The leaf nodes
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Figure 12: Decision Tree hierarchy illustration using the data from our human experi-
ments with 11 different categorical context features.

of this regression tree contain the output priorities of each of the norms for the
given context path, thereby adapting the precedence of norms depending on the
situation.

7.4. Discussion
The insight we can get from the above analysis is that the priority of norms is

sensitive to the changing environment, yet in a complicated way.
First, the priority of norms are not globally static; instead, it is dependent on

the context. Taking the cleaning task as an example, the robot might need to
decide between finishing the task efficiently or carefully to ensure safety. In this
scenario, participants reported significantly more preferences for the safety norm
over the efficiency norm when there were people in the room. Here the priorities
of two norms do not have a single ordering because they are mainly influenced
by the feature, number of people. Such findings confirm our initial motivation of
building a norm-aware reasoning framework, because autonomous systems have
no way to solve norm conflicts without a correct perception of the context and the
ability to reason based on it. Considering the complex nature of this problem, our
proposed context representation and norm reasoning framework in section 6 are
meaningful attempts towards a feasible solution for autonomous systems to deal
with norm conflicts.

Some norms are especially more context-dependent than others. For exam-
ple, the priority of safety norm is significantly influenced by five different context
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features, but norms like ’do not harm’ were not sensitive to any context variables
in our settings. Our finding is that some norms are more universal while others
are more context-specific, which be reflected by their context and activation con-
ditions. By using the modular normative MDP we proposed in section 5, only
relevant modules with a subset of appropriate norms are activated and computed
in a given context which brings significant benefit in computation time and mem-
ory usage.

Context features play different roles in activating social norms; some of them
are more influential than others. Based on the results of the ANOVAs, we can
see that the priority of a norm can be sensitive to various contextual factors, yet
the influence of each factor varies in terms of significance and effect size. As
shown in our results, factors such as ’domain goal’, ’emergency’ and ’characteris-
tics’ dramatically influence the norms the robot should obey. Accordingly, those
features should be given higher priorities or weights in robot perception of the en-
vironment to facilitate the normative reasoning process. The context tree we built
based on human data in section 7.3 serves this purpose by starting checking with
the most important features in the environment until reaching a reasonable norm
output.

Additionally, the naturally occurring relations among contexts and entities in
the world influence the features likely to occur and interact with each other. For
example, particular characteristics like being a burglar might be naturally related
to danger or emergency norms. The interaction effect of features on norm prior-
ities increase the complexity of normative reasoning problem in addition. Con-
sidering the structure of human norm network, naive hard-coding rules are not
enough for autonomous agents to socially interact with people in the dynamic
context. To better capture the relationship, a more sophisticated modeling method
is required to serve the computational framework, which refers to the pipeline we
introduced in the section 4, 5, and 6.

8. Conclusion and Future Work

In this work, we proposed a scalable, and generalizable approach towards in-
tegrated norm-aware reasoning for autonomous systems. We proposed the MN-
MDP framework which provides a generalizable representation for norms and
integrates it into the domain planning alleviating the curse of dimensionality prob-
lem encountered by previous approaches. Our MNMDP framework is well-suited
for long-term autonomy applications since it needs little re-computation for any
modifications made to the norm set. We illustrated its working using a roadway
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simulator modeling traffic rules and also showed the computational advantages of
using our MNMDP framework over existing methods. We motivated the need to
model the activation function of the MNMDPs to successfully deploy the MN-
MDP approach in complex environments. We showed that our novel approach,
which combines propositional logic and decision trees, for modeling the activa-
tion function is expressive, scalable, and interpretable. We illustrated the mag-
nitude of the performance boost of our context model compared to a baseline
with respect to both computation time and memory consumption. Using our con-
text modeling approach, we demonstrated that we can efficiently identify which
MNMDPs to use in various environmental conditions. Additionally, we showed
that we can resolve normative conflicts using norm priorities, which are condi-
tioned on the environmental context, rather than on global priorities as in previous
work. Furthermore, we developed and deployed human experiments to model
context-dependent norm priorities and to enable our context model to learn from
the collected user data. These experiments also shed light on various crucial norm
properties, such as dynamic norm priority, weighted contextual feature, context
sensitivity and interaction effect between contextual factors.

As future work, we plan to make extensions to various parts of our approach.
For the MNMDP framework, we aim to extend our approach to support partially
observable environments. Additionally, we plan to learn estimates of the reward
and penalty functions for the MNMDPs directly from user behavior using inverse
reinforcement learning. Furthermore, we want to build a more concrete repre-
sentation of the human normative reasoning process to improve our human norm
network. To accomplish this goal, we plan to better capture the hierarchical struc-
ture and mutual activation of norms.

For the context modeling component, we plan to make the following exten-
sions. First, we will extend our knowledge base with more diverse, yet realistic,
social scenarios to improve the robustness of our models and enable our general-
ization approach to achieve better results. Second, we will extend our context tree
to support online learning, which will make it better suited for long-term auton-
omy applications. To accomplish this, we will use an active learning component
in which people in the environment can provide the robot with feedback regard-
ing the appropriateness of its inferred activated norms. This feedback can then
be used to create new connections in the knowledge graph and the context tree.
Third, we plan to investigate the use of concepts from TWTL to extend our logic
to support temporal relaxation for satisfying time constraints.
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